Collection of formulae for Euler's constant g
1 Integral formulae
Euler's constant g appears in many integrals (often related, for
example, to the gamma function or the logarithmic integral
function), we propose here to enumerate a selection of such integrals. Some
of those can be deduced from others by elementary changes of variable.
We use the notation
ë x
û for the floor function
and { x} for the fractional part of a number x.
|
|
|
ó õ
|
¥
1
|
|
t-
ë t
û
t2
|
dt= |
ó õ
|
¥
1
|
|
{ t}
t2
|
dt |
| |
|
|
ó õ
|
¥
0
|
e-tlog(t) dt=G¢(1) |
| |
|
|
ó õ
|
¥
0
|
e-tlog2(t) dt=G(2)(1) (Euler-Mascheroni) |
| |
|
|
ó õ
|
¥
0
|
e-tlog3(t) dt=G(3)(1) (Euler-Mascheroni) |
| |
|
- |
ó õ
|
1
0
|
log( log(1/t)) dt |
| |
|
-4 p-1/2 |
ó õ
|
¥
0
|
e-t2 log(t) dt |
| |
|
|
ó õ
|
¥
0
|
e-t |
æ è
|
1
1-e-t
|
- |
1
t
|
ö ø
|
dt |
| |
|
|
ó õ
|
1
0
|
|
æ è
|
1
t
|
+ |
1
log(1-t)
|
ö ø
|
dt |
| |
|
|
ó õ
|
¥
0
|
|
æ è
|
1
1+t
|
-e-t |
ö ø
|
|
dt
t
|
|
| |
|
|
ó õ
|
¥
0
|
|
æ è
|
1
1+t2
|
-cos(t) |
ö ø
|
|
dt
t
|
|
| |
|
ab |
ó õ
|
¥
0
|
|
e-ta-e-tb
t
|
dt a > 0,b > 0 |
| |
|
- |
ó õ
|
1
0
|
|
ó õ
|
1
0
|
|
(1-x)
(1-xy)log(xy)
|
dxdy (Sondow [12]) |
| |
|
1- |
ó õ
|
1
0
|
|
1
1+t
|
|
æ è
|
¥ å
k=1
|
t2k |
ö ø
|
dt (Catalan) |
| |
|
1- |
ó õ
|
1
0
|
|
1+2t
1+t+t2
|
|
æ è
|
¥ å
k=1
|
t3k |
ö ø
|
dt (Ramanujan [10]) |
| |
|
|
1
2
|
+2 |
ó õ
|
¥
0
|
|
t dt
(t2+1)(e2pt-1)
|
(Hermite) |
| |
|
1+ |
1
2
|
+...+ |
1
n-1
|
+ |
1
2n
|
-log(n)+2 |
ó õ
|
¥
0
|
|
t dt
(t2+n2)(e2pt-1)
|
|
| |
|
|
ó õ
|
1
0
|
|
1-e-t-e-1/t
t
|
dt (Barnes[1]) |
| |
|
|
ó õ
|
x
0
|
|
1-cos(t)
t
|
dt- |
ó õ
|
¥
x
|
|
cos(t)
t
|
dt-log(x) x > 0 |
| |
|
|
ó õ
|
x
0
|
|
1-e-t
t
|
dt- |
ó õ
|
¥
x
|
|
e-t
t
|
dt-log(x) x > 0 |
|
|
This last integral is often used to deduce an efficient algorithm to compute
many digits of g (see [4]).
2 Series formulae
Now here is a list of series for g.
2.1 Basic series
|
|
|
lim
n® ¥
|
|
æ è
|
n å
k=1
|
|
1
k
|
-log(n) |
ö ø
|
(Euler) |
| |
|
1+ |
¥ å
k=2
|
|
æ è
|
1
k
|
+log |
æ è
|
1- |
1
k
|
ö ø
|
ö ø
|
(Euler) |
| |
|
|
lim
n® ¥
|
|
æ è
|
n å
k=1
|
|
1
k
|
- |
1
2
|
log( n(n+1)) |
ö ø
|
(Cesaro) |
| |
|
|
lim
n® ¥
|
|
æ è
|
n å
k=1
|
|
2
2k-1
|
-log(4n) |
ö ø
|
|
| |
|
|
lim
n® ¥
|
|
æ è
|
n å
k=1
|
|
1
k
|
- |
1
2
|
log |
æ è
|
n2+n+ |
1
3
|
ö ø
|
ö ø
|
|
| |
|
|
lim
n® ¥
|
|
æ è
|
n å
k=1
|
|
1
k
|
- |
1
4
|
log |
æ è
|
æ è
|
n2+n+ |
1
3
|
ö ø
|
2
|
- |
1
45
|
ö ø
|
ö ø
|
|
| |
|
|
lim
n® ¥
|
|
æ è
|
2 |
æ è
|
1+ |
(n-1)
2n
|
+ |
( n-1) ( n-2)
3n2
|
+... |
ö ø
|
-log(2n) |
ö ø
|
(Kruskal [7]) |
| |
|
|
lim
s® 1+
|
|
æ è
|
¥ å
k=1
|
|
æ è
|
1
ks
|
- |
1
sk
|
ö ø
|
ö ø
|
(Sondow [11]) |
| |
|
|
lim
n® ¥
|
|
æ è
|
n-G |
æ è
|
1
n
|
ö ø
|
ö ø
|
(Demys) |
| |
|
|
log(2)
2
|
+ |
1
log(2)
|
|
¥ å
k=2
|
(-1)k |
log(k)
k
|
|
|
|
The last alternating series may be convenient to estimate Euler's constant
to thousand decimal places thanks to convergence acceleration of
alternating series (see the related essay at [4]).
2.1.1 Ramanujan's approach
In Ramanujan's famous notebooks, we find another kind of Euler-Maclaurin like asymptotic expansion; he writes
|
n å
k=1
|
|
1
k
|
- |
1
2
|
log( n(n+1)) » g+ |
1
12p
|
- |
1
120p2
|
+ |
1
630p3
|
- |
1
1680p4
|
|
|
with the variable p=n(n+1)/2, which extends Cesaro's estimation. This
representation may also be deduced from the classical Euler-Maclaurin
expansion with Bernoulli's numbers.
2.2 Around the zeta function
When he studied g, Euler found some interesting series which allow
to compute it with the integral values of the Riemann zeta function. He used
one of those to give the first estimation of his constant (a five correct
digits approximation).
There are many formulae giving g as function of the Riemann zeta
function z(s), some are easy to prove. We provide the demonstration
of one example.
By definition, we may write:
g = |
lim
n® ¥
|
|
æ è
|
n å
k=1
|
|
1
k
|
-log(n) |
ö ø
|
=1+ |
¥ å
k=2
|
|
æ è
|
1
k
|
+log |
æ è
|
k-1
k
|
ö ø
|
ö ø
|
=1+ |
¥ å
k=2
|
|
æ è
|
1
k
|
+log |
æ è
|
1- |
1
k
|
ö ø
|
ö ø
|
|
|
and using the series for log(1-x) when x=1/k < 1:
g = 1- |
¥ å
k=2
|
|
æ è
|
¥ å
i=2
|
|
1
iki
|
ö ø
|
|
|
then by associativity of this positive sum:
g = 1- |
¥ å
i=2
|
|
1
i
|
|
æ è
|
¥ å
k=2
|
|
1
ki
|
ö ø
|
=1- |
¥ å
i=2
|
|
1
i
|
( z(i)-1) . |
|
So we've just demonstrated a first relation between g and the zeta
functions. Because it's clear that z(i)-1 is equivalent to 1/2i
when i becomes large, some of those series have geometric convergence (of
course one has to evaluate z(i) for different integral values of i).
A general improvement can be made if we start the series with k > 2 by
computing its first terms, that is, for any integer n > 1:
g = 1+ |
n å
k=2
|
|
æ è
|
1
k
|
+log |
æ è
|
k-1
k
|
ö ø
|
ö ø
|
+ |
¥ å
k=n+1
|
|
æ è
|
1
k
|
+log |
æ è
|
k-1
k
|
ö ø
|
ö ø
|
|
|
and the result now becomes
g = 1+ |
n å
k=2
|
|
æ è
|
1
k
|
+log |
æ è
|
k-1
k
|
ö ø
|
ö ø
|
- |
¥ å
i=2
|
|
1
i
|
|
æ è
|
z(i)-1- |
1
2i
|
-...- |
1
ni
|
ö ø
|
, |
|
and this time
z(i,n+1)=z(i)-1- |
1
2i
|
-...- |
1
ni
|
~ |
1
(n+1)i
|
|
|
so that the rate of convergence is better. This function z(s,a) is
known as the Hurwitz Zeta function. For different values of n,
the identity for g gives
|
|
2 g = |
3
2
|
-log(2)- |
¥ å
i=2
|
|
1
i
|
|
æ è
|
z(i)-1- |
1
2i
|
ö ø
|
|
| |
|
3 g = |
11
6
|
-log(3)- |
¥ å
i=2
|
|
1
i
|
|
æ è
|
z(i)-1- |
1
2i
|
- |
1
3i
|
ö ø
|
|
| |
|
|
|
or in term of z(s,a) and the harmonic number Hn
g = Hn-log(n)- |
¥ å
i=2
|
|
z(i,n+1)
i
|
. |
|
2.2.1 Zeta series
|
|
1- |
¥ å
k=2
|
|
(z(k)-1)
k
|
(Euler) |
| |
|
|
¥ å
k=2
|
|
(k-1)(z(k)-1)
k
|
(Euler) |
| |
|
1- |
log(2)
2
|
- |
¥ å
k=1
|
|
(z(2k+1)-1)
2k+1
|
|
| |
|
log(2)- |
¥ å
k=1
|
|
z(2k+1)
4k(2k+1)
|
(Euler) |
| |
|
1-log |
æ è
|
3
2
|
ö ø
|
- |
¥ å
k=1
|
|
(z(2k+1)-1)
4k(2k+1)
|
(Euler-Stieltjes) |
| |
|
1- |
¥ å
k=1
|
|
z(2k+1)
(k+1)(2k+1)
|
(Glaisher) |
| |
|
2-2log(2)- |
¥ å
k=1
|
|
(z(2k+1)-1)
(k+1)(2k+1)
|
(Glaisher) |
| |
|
|
¥ å
k=2
|
(-1)k |
z(k)
k
|
(Euler) |
| |
|
1-log(2)+ |
¥ å
k=2
|
(-1)k |
(z(k)-1)
k
|
|
| |
|
|
3
2
|
-log(2)- |
¥ å
k=2
|
(-1)k(k-1) |
(z(k)-1)
k
|
(Flajolet-Vardi) |
| |
|
|
5
4
|
-log(2)- |
1
2
|
|
¥ å
k=3
|
(-1)k(k-2) |
(z(k)-1)
k
|
|
| |
|
log(8p)-3+2 |
¥ å
k=2
|
(-1)k |
(z(k)-1)
k+1
|
|
| |
|
log |
æ è
|
4
p
|
ö ø
|
+2 |
¥ å
k=2
|
(-1)k |
z(k)
2kk
|
|
| |
|
1+log |
æ è
|
16
9p
|
ö ø
|
+2 |
¥ å
k=2
|
(-1)k |
(z(k)-1)
2kk
|
|
|
|
2.3 Other series
|
|
|
¥ å
i=1
|
i |
æ è
|
2i+1-1 å
k=2i
|
|
(-1)k
k
|
ö ø
|
(Vacca [14], Franklin [3]) |
| |
|
|
¥ å
k=1
|
(-1)k |
ë log2k
û
k
|
(Vacca [14]) |
| |
|
|
lim
n® ¥
|
|
æ è
|
1
n
|
|
n å
k=1
|
|
ì í
î
|
n
k
|
ü ý
þ
|
ö ø
|
(de la Vallée Poussin [15]) |
| |
|
| |
|
1-log(2)+ |
¥ å
k=1
|
|
ak
k(k+1)
|
(Kluyver) |
| |
|
|
n-1 å
k=1
|
|
1
k
|
-log(n)+(n-1)! |
¥ å
k=1
|
|
æ è
|
ak
k(k+1)...(k+n-1)
|
ö ø
|
(Kluyver
[6]) |
|
|
In Kluyver's formulae the ak are rational numbers defined by:
|
|
| |
|
|
1
k+1
|
|
k-1 å
i=1
|
|
k-i
i(i+1)
|
ak-i |
|
|
and 0 < ak £ 1/(k+1). Here are the first values:
a1= |
1
2
|
,a2= |
1
12
|
,a3= |
1
24
|
,a4= |
19
720
|
,a5= |
3
160
|
,a6= |
863
60480
|
,a7= |
275
24192
|
,... |
|
Kluyver's last relation may be used to compute a few thousand digits of g.
3 Euler's constant and number theory
3.1 Dirichlet estimation
In 1838, Lejeune Dirichlet (1805-1859) showed that the mean of the divisors function d(k) (numbers of divisors of k, [5]) of all
integers from 1 to n is such as
|
1
n
|
|
n å
k=1
|
d(k)=logn+(2g-1)+O |
æ è
|
1
Ön
|
ö ø
|
. |
|
For example a direct computation with n=105 produces
|
1
n
|
|
n å
k=1
|
d(k)-logn=0.1545745350... |
|
while ( 2g-1) = 0.1544313298...
3.2 Mertens formulae
If p represents a prime number, Franz Mertens (1840-1927) gave in 1874 the
two beautiful formulae ([8], [5]):
|
|
|
lim
n® ¥
|
|
1
log(n)
|
|
Õ
p £ n
|
|
æ è
|
1- |
1
p
|
ö ø
|
-1
|
|
| (1) | |
|
|
lim
n® ¥
|
|
1
log(n)
|
|
Õ
p £ n
|
|
æ è
|
1+ |
1
p
|
ö ø
|
|
| (2) |
|
The product (1) is equivalent to the series
g = |
lim
n® ¥
|
|
æ è
|
å
p £ n
|
-log |
æ è
|
1- |
1
p
|
ö ø
|
-log( log(n)) |
ö ø
|
|
| (3) |
but when p is large
-log |
æ è
|
1- |
1
p
|
ö ø
|
= |
1
p
|
+O |
æ è
|
1
p2
|
ö ø
|
|
|
and the relation (3) for g is very similar to it's
definition relation, but this time, only the prime numbers are taken into
account in the sum.
3.3 Von Mangoldt function
The von Mangoldt function L (k) is generated by
mean of the Zeta function as follow [5]:
- |
z¢(s)
z(s)
|
= |
¥ å
k=1
|
|
L(k)
ks
|
s > 1 |
| (4) |
and it's also defined by
|
ì í
î
|
L (k)=log(p) if k=pm for any prime p |
|
|
|
|
|
The relation (4) may also be written as
z(s)+ |
z¢(s)
z(s)
|
=- |
¥ å
k=1
|
|
( L (k)-1)
ks
|
s > 1 |
|
from which, by taking the limits as s tends to 1, we deduce the
interesting series expansion:
g = - |
1
2
|
|
¥ å
k=2
|
|
(L (k)-1)
k
|
. |
|
4 Approximations
Unlike the constant p, few approximations are available for g,
it may be useful to list a few of those.
4.1 Rational approximations
The continued fraction representation makes it easy to find the
sequence of the best rational approximations:
g = [0;1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,1,11,3,7,1,7,1,1,5,1,49,4,1,65,...], |
|
that is, in term of fractions
|
é ë
|
0,1, |
1
2
|
, |
3
5
|
, |
4
7
|
, |
11
19
|
, |
15
26
|
, |
71
123
|
, |
228
395
|
, |
3035
5258
|
, |
15403
26685
|
, |
18438
31943
|
, |
33841
58628
|
, |
289166
500967
|
, |
323007
559595
|
,... |
ù û
|
. |
|
For example, by mean of the continued fractions, we get
|
ê ê
|
33841
58628
|
-g |
ê ê
|
< 3.2×10-11 |
|
and
|
ê ê
|
376566901
652385103
|
-g |
ê ê
|
< 2.0×10-19. |
|
A more exotic fraction due to Castellanos [2] is
|
ê ê
|
9903-553-792-42
705
|
-g |
ê ê
|
< 3.8.10-15. |
|
4.2 Other approximations
|
|
| |
|
| |
|
|
3
43
|
| Ö
|
66+Ö6
|
=0.577215(396...) |
| |
|
|
59
3077
|
( 1+11Ö7) = 0.577215664(894...) |
| |
|
|
æ è
|
7
83
|
ö ø
|
2/9
|
=0.577215(209...) (Castellanos [2]) |
| |
|
|
æ è
|
803+92
614
|
ö ø
|
1/6
|
=0.577215664(572...) (Castellanos [2]) |
| |
|
|
4
2Ö3+5log2
|
=0.57721(411...) |
| |
|
|
3
3+2log3
|
=0.5772(311...) |
| |
|
|
73
293
|
log |
æ è
|
71
7
|
ö ø
|
=0.57721566(601...) |
| |
|
|
3696
43115
|
log( 840) = 0.5772156649015(627...) |
|
|
References
- [1]
- E.W. Barnes, On the expression of Euler's constant
as a definite integral, Messenger, (1903), vol. 33, p. 59-61
- [2]
- D. Castellanos, The Ubiquitous Pi. Part I.,
Math. Mag., (1988), vol. 61, p. 67-98
- [3]
- F. Franklin, On an expression for Euler's constant, J. Hopkins circ., (1883), vol. 2, p. 143
- [4]
- X. Gourdon and P. Sebah, Numbers, Constants and
Computation, World Wide Web site at the adress: http://numbers.computation.free.fr/Constants/constants.html, (1999)
- [5]
- G.H. Hardy and E. M. Wright, An Introduction to the
Theory of Numbers, Oxford Science Publications, (1979)
- [6]
- J. C. Kluyver, De constante van Euler en de
natuurlijhe getallen, Amst. Ak., (1924), vol. 33, p. 149-151
- [7]
- M.D. Kruskal, American Mathematical Monthly, (1954), vol.
61, p. 392-397
- [8]
- F. Mertens, Journal für Math., (1874), vol. 78, p.
46-62
- [9]
- S. Ramanujan, A series for Euler's constant g, Messenger, (1916), vol. 46, p. 73-80
- [10]
- S. Ramanujan, The Lost Notebook and Other
Unpublished Papers, Narosa, New Delhi, (1988)
- [11]
- J. Sondow, An Antisymmetric Formula for Euler's
Constant, Mathematics Magazine, (1998), vol. 71, number 3, p. 219-220
- [12]
- J. Sondow, Criteria for Irrationality of Euler's
Constant, Submitted to Proc. Amer. Math. Soc., (2002)
- [13]
- T. J. Stieltjes, Tables des valeurs des sommes Sk=ån=1¥n-k,Acta Mathematica, (1887), vol. 10, p.
299-302
- [14]
- G. Vacca, A New Series for the Eulerian Constant,
Quart. J. Pure Appl. Math, (1910), vol. 41, p. 363-368
- [15]
- C. de la Vallée Poussin, Sur les valeurs
moyennes de certaines fonctions arithmétiques, Annales de la société scientifique de Bruxelles, (1898), vol. 22, p. 84-90
File translated from
TEX
by
TTH,
version 3.01.
On 25 Oct 2002, 16:34.