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1 Integral formulae

Euler’s constant v appears in many integrals (often related, for example, to
the gamma function or the logarithmic integral function), we propose here to
enumerate a selection of such integrals. Some of those can be deduced from
others by elementary changes of variable.

We use the notation |z for the floor function and {z} for the fractional part

of a real number z.
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This last integral is often used to deduce an efficient algorithm to compute
many digits of v (see [6]).

2 Series formulae

In this section we provide a list of various series for ~.

2.1 Basic series
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The last alternating series may be convenient to estimate Euler’s constant
to thousand decimal places thanks to convergence acceleration of alternating
series (see the related essay at [6]).

2.1.1 Ramanujan’s approach

In Ramanujan’s famous notebooks, we find another kind of Fuler-Maclaurin like
asymptotic expansion; he writes
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with the variable p = %n(n + 1), which extends Cesaro’s estimation. This rep-
resentation may also be deduced from the classical Euler-Maclaurin expansion
with Bernoulli’s numbers.

2.2 Around the zeta function

When he studied v, Euler found some interesting series which allow to compute

it with the integral values of the Riemann zeta function. He used one of those

to give the first estimation of his constant (a five correct digits approximation).
There are many formulae giving v as function of the Riemann zeta function

¢(s), some are easy to prove. We provide the demonstration of one example.
By definition, we may write
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and using the series for log(1 — ) when x = % < 1 gives
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SRR I DS FAE SRR

>2 k>2 0>2

So we have ve just demonstrated a first relation between v and the zeta func-
tions. Because it is clear that ((£) — 1 is equivalent to 1/2¢ when ¢ becomes
large, some of those series have geometric convergence (of course one has to
evaluate ((¢) for different integral values of ¢).

A general improvement can be made if we start the series with k& > 2 by
computing its first terms, that is, for any integer n > 1:
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and the result now becomes
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so that the rate of convergence is better. This function ((s,a) is known as the
Hurwitz Zeta function. For different values of n, the identity for - gives
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or in term of {(s,a) and the harmonic number H,,
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Other series
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In Kluyver’s formulae the a; are rational numbers defined by:
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and 0 < a; < T}H Here are the first values:
1 1 1 19 3 863 275
a, ==,a4,=-—,0, = —,0, = —,0, = ——,q, = ,a, = .
toogrr o127 2477 7207 1607 ° 604807 7 24192

Kluyver’s last relation may be used to compute a few thousand digits of ~.

3 Euler’s constant and number theory

3.1 Dirichlet estimation

In 1838, Lejeune Dirichlet (1805-1859) showed that the mean of the divisors
function d(k) (numbers of divisors of k, [7]) of all integers from 1 to n is such
as
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For example, a direct computation with n = 10° produces
1 n
— Y d(k) — logn = 0.1545745350...
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while 2y — 1 = 0.1544313298....

3.2 Mertens formulae

If p represents a prime number, Franz Mertens (1840-1927) gave in 1874 the two
beautiful formulae ([10], [7]):

1 1\
m oI (1) ®)
n—oo logn pin p



The product (3) is equivalent to the series

1
v = lim E —log <1 — > —loglogn (5)
n—oo p

p<n

1 1 1
oe(1-2) =20 (1)
p p p

and the relation (5) for « is very similar to its definition relation, but this time,
only the prime numbers are taken into account in the sum.

but when p is large

3.3 Von Mangoldt function

The von Mangoldt function A(k) is generated by mean of the Zeta function as
follow [7]:

_C/(S) — Z Ak(:k)7 s>1 (6)

and it is also defined by

A(k) =logp if k = p™ for any prime p,
A(k) =0 otherwise.

The relation (6) may also be written as
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from which, by taking the limits as s tends to 1, we deduce the interesting series
expansion:
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It is a very slow and irregular converging series, partial sums .S,, with n terms
are

S1000 = 0.57(835...),

S10,000 = 0.57(648...),

S100,000 = 0.57(694...),
S1000,000 = 0.577(417...).



4 Approximations

Unlike the constant 7, few approximations are available for -, it may be useful
to list a few of those.

4.1 Rational approximations

The continued fraction representation makes it easy to find the sequence of the
best rational approximations:

v =10;1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,1,11,3,7,1,7,1,1,5,1,49,4, 1,65, ...],

that is, in term of fractions

0.1 134 11 15 71 228 3035 15403 18438 33841 289166 323007

For example, by mean of the continued fractions, we get the two approximative
values

33841
58628

'y’ <3.2x1071!

and

376566901
652385103 |

‘ <2.0x 10719,

A more exotic fraction due to Castellanos [3] is

‘9903 — 553 — 792 — 42

- 3.8 x 10715,
708 ’y‘ < X

4.2 Other approximations
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3696
~ 2% 100 (840) = 0.5772156649015(627...
~ T5i1r 108 (840) = 0.5772156649015(627...)
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