
Abstract

In this paper, we present an optimization of Odlyzko and Schönhage algorithm that com-
putes efficiently Zeta function at large height on the critical line, together with computation of
zeros of the Riemann Zeta function thanks to an implementation of this technique. The first
family of computations consists in the verification of the Riemann Hypothesis on all the first
1013 non trivial zeros. The second family of computations consists in verifying the Riemann
Hypothesis at very large height for different height, while collecting statistics in these zones.
For example, we were able to compute two billion zeros from the 1024-th zero of the Riemann
Zeta function.
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1 Introduction

The Riemann Zeta function is defined by

ζ(s) =

∞∑
n=1

1

ns

for complex values of s. While converging only for complex numbers s with <(s) > 1 , this
function can be analytically continued to the whole complex plane (with a single pole at
s = 1). The Riemann Zeta-function was first introduced by Euler with the computation of

∞∑
n=1

1

n2

but it was Riemann who, in the 1850’s, generalized its use and showed that the distribution
of primes is related to the location of the zeros of Zeta. Riemann conjectured that the non
trivial zeros of ζ(s) are located on the critical line <(s) = 1/2. This conjecture, known as
the Riemann Hypothesis (RH), has never been proved or disproved, and is probably the most
important unsolved problem in mathematics.

1.1 Numerical verification of the RH on the first zeros

History of numerical verifications

Numerical computations have been made threw the ages to check the RH on the first zeros.
Computer age, starting with Turing computations, permitted to perform verification higher
than billions of zeros. An history of the RH verification on the first n zeros is given below.

Year n Author

1903 15 J. P. Gram [8]

1914 79 R. J. Backlund [1]

1925 138 J. I. Hutchinson [10]

1935 1,041 E. C. Titchmarsh [30]

1953 1,104 A. M. Turing [33]

1956 15,000 D. H. Lehmer [16]

1956 25,000 D. H. Lehmer [15]

1958 35,337 N. A. Meller [18]

1966 250,000 R. S. Lehman [14]

1968 3,502,500 J. B. Rosser, J. M. Yohe, L. Schoenfeld [28]

1977 40,000,000 R. P. Brent [3]

1979 81,000,001 R. P. Brent [4]

1982 200,000,001 R. P. Brent, J. van de Lune, H. J. J. te Riele, D. T. Winter [34]

1983 300,000,001 J. van de Lune, H. J. J. te Riele [12]

1986 1,500,000,001 J. van de Lune, H. J. J. te Riele, D. T. Winter [13]

2001 10,000,000,000 J. van de Lune (unpublished)

2003 250,000,000,000 S. Wedeniwski [35]
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It is important to notice here that the recent fast method by Odlyzko and Schönhage to
perform multi-evaluation of the Riemann Zeta function (see later for detail) has not been
used even in the recent important distributed computation directed by S. Wedeniwski (on a
Pentium 4 2Ghz equivalent time, this computation required about 700 years of computation).
The method he used is more classical and is more likely to control potential numerical errors
and implementation bugs.

Consequences of numerical verifications of the RH

Without the assumption of the RH, numerical verifications of the RH on the first N zeros
permit to derive explicit estimates for some number theoretic functions, like

π(x) =
∑
p≤x

1, ψ(x) =
∑

(p,ν):pν≤x

log p, θ(x) =
∑
p≤x

log p,

where p runs other prime numbers. This development have been initiated by Rosser [26] in
1941, later improved by Rosser and Schoenfeld [27, 29] in 1975-1976. For example, Rosser
and Schoenfeld, based on the verification on the RH on the first 3, 502, 500 zeros [28], proved
that for x > 1.04× 107,

|ψ(x)− x| < 0.0077629
x

log x
, |θ(x)− x| < 0.0077629

x

log x
.

From RH verification at larger height, more recent progress have been obtained. For example,
Dusart in [6] obtained several tighter estimates of this kind based on the RH verification until
the first 1, 500, 000, 001 zeros [13]. Very recently, Ramar and Saouter [25], from S. Wedeniwski
computations that shows that all non-trivial zeros s = σ + it of Zeta for |t| < T0 = 3.3× 109

lie on the critical line, obtained an estimate of a different kind by proving that for every real
number x ≥ 10, 726, 905, 041, there exists at least one prime number p such that

x

(
1− 1

28, 314, 000

)
< p ≤ x.

Our result of the RH verification until the 1013-th zero should permit to improve such
quantitative estimates a little more. It is of importance here to state that numerical verifi-
cation of the RH is proven by a large computation. Thus, in addition to possible errors in
the validity of used results and algorithms, it is subject to several possible other errors that
would not be easily controlled (human coding bug, compiler bug, system bug, processor bug,
etc). Unlike other numerical computations for which the notion of certificate permits rela-
tively easy verification, (examples include primality testing with Elliptic curve for example
(ECPP), integer factorization, odd perfect number bounds) here the verification has the same
cost as the total computation which was used to obtain the result (unlike computations with
certificates). It is thus difficult to consider such results as “proved” in a strong sense as a
pure mathematical proof. This problematic is expected to be more and more important in
the future, as results “computationnaly proved” are likely to be more frequent. Discussion
about validity of our RH verification until the 1013-th zero is the object of section 3.3.1.

1.2 Numerical computations of the distribution of the zeros of
the Zeta function

While numerical computations on zeros of the Zeta function have long been focused on RH
verification only (to check the RH, isolating the zeros is sufficient so no precise computations
of the zeros are needed) it was Odlyzko who the first, computed precisely large consecutive
sets of zeros to observe their distribution. More precisely, Odlyzko made some empirical
observations of the distribution on the spacing between zeros of ζ(s) in various zones and
checked the correspondence with the GUE hypothesis, which conjectures that normalized
spacing between zeros behaves like eigenvalues of random hermitian matrices (see section 4.2
for more details). In 1987, Odlyzko computed numerically 105 zeros of the Riemann Zeta
function between index 1012 + 1 and 1012 + 105 to the accuracy of 10−8 and was the first to
observe a good agreement with the GUE hypothesis (see [20]). Later, in order to reach much
higher heights, Odlyzko with Schönhage [24] developed a fast algorithm for multi-evaluation
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of ζ(s). After refinements to make this method efficient for practical purposes, Odlyzko was
able to compute 70 million zeros at height 1020 in 1989 and then 175 million in 1992 at the
same height (see [21]). Later he reached the height 1021 (see [22]), and in 2001 he computed
ten billion zeros at height 1022 (see [23]). In a more recent unpublished work in 2002, Odlyzko
computed twenty billion zeros at height 1023.

1.3 Notations and definitions

All results in this section are classical and can be found in [31] or [7] for example.
It is known that all non-trivial zeros are located in the band 0 < <(s) < 1. The Riemann

Hypothesis is the conjecture that all these zeros are located on the critical line <(s) = 1/2.
Restricting on zeros with positive imaginary part, the n-th zero (sorted in increasing order of
its imaginary part) is denoted by ρn and we denote γn = =(ρn). Thus if the RH is true, we
have ρn = 1/2 + iγn.

We define
θ(t) = arg

(
π−it/2Γ(1/4 + it/2)

)
(1)

where the argument is defined by continuous variation of t starting with the value 0 at t = 0.
A consequence of the Zeta functional equation is that the function

Z(t) = eiθ(t)ζ( 1
2

+ it),

known as the Riemann-Siegel Z-function, is real valued. Moreover we have |Z(t)| = |ζ(1/2+it)|
thus the zeros of Z(t) are the imaginary part of the zeros of ζ(s) which lie on the critical strip.
We are lead to finding change of sign of a real valued function to find zeros on the critical
strip, and this is a very convenient property in numerical verification of the RH. This is why
our computations concentrate on Z(t) evaluation.

We define

S(t) =
1

π
arg ζ( 1

2
+ it), (2)

where the argument is defined by continuous variation of s in ζ(s) starting at s = 2, then
vertically to s = 2 + it, then horizontally to s = 1/2 + it. The number of zeros ρ of Zeta
function with 0 < =(ρ) < t is denoted by N(t). We have

N(t) = 1 +
1

π
θ(t) + S(t). (3)

It is known unconditionally that
S(t) = O(log t)

so that with the asymptotic expansion of θ(t) we get

N(t) =
t

2π
log

t

2π
− t

2π
+O(log t).

This entails that γn ∼ 2πn/ logn. The function S(t) is important and has been widely studied.
It is known that unconditionally,

S1(t) ≡
∫ t

0

S(u)du = O(log t).

Thus the mean value of the S(t) function is zero. Another result states that the mean value
of S(t)2 is 2π2 log log T , so S(t) is a small and very very slowly increasing function on average.
As we will see later, unexpected behavior of the ζ(1/2 + it) function is likely to occur when
S(t) is large, and this is why some particular statistics were done on this function.

2 Computation of the Riemann-Siegel Z-function

In this section, we describe an algorithm due to Odlyzko and Schönhage that computes ef-
ficiently values of the Riemann Zeta function on the critical line, together with practical
considerations and optimizations that were used in our implementation.
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2.1 Notations

We first recall that on the critical line σ = 1/2, the Riemann Zeta function satisfies

ζ( 1
2

+ it) = e−iθ(t)Z(t) (4)

where θ(t) is a real valued function defined in (1). As t goes to infinity, θ(t) satisfies the
asymptotic formula

θ(t) =
t

2
log

t

2π
− t

2
− π

8
+

1

48t
+

7

5760t3
+ · · · (5)

The Riemann-Siegel Z-function is a real valued function of the real variable t and satisfies
the Riemann-Siegel expansion

Z(t) = 2

m∑
n=1

cos(θ(t)− t logn)√
n

+R(t)

R(t) = (−1)m+1τ−1/2
M∑

j=0

(−1)jτ−jΦj(z) +RM (t), (6)

with RM (t) = O(t−(2M+3)/4), where we used the notations

τ =

√
t

2π
, m = bτc, z = 2(t−m)− 1.

The first functions Φj(z) are defined by

Φ0(z) =
cos( 1

2
πz2 + 3

8
π)

cos(πz)

Φ1(z) =
1

12π2
Φ

(3)
0 (z)

Φ2(z) =
1

16π2
Φ

(2)
0 (z) +

1

288π4
Φ

(6)
0 (z)

The general expression of Φj(z) for j > 2 Is quite complicated and we refer to [36] or [31]
for it. As exposed in [11], explicit bounds have been rigorously obtained on the error term
RM (t), and for t ≥ 200, one has

|R0(t)| ≤ 0.127 t−3/4, |R1(t)| ≤ 0.053 t−5/4, |R2(t)| ≤ 0.011 t−7/4.

In the practice for computations of zeros of Z(t) above the 1010-th zero for example, the
choice M = 1 permits to obtain an absolute precision of Z(t) smaller than 2× 10−14 and this
is sufficient to locate the zeros.

2.2 Presentation of the Odlyzko-Schönhage algorithm

The Odlyzko-Schönhage algorithm permits efficient evaluations of Z(t) in a range of the form
T ≤ t ≤ T + ∆, with ∆ = O(

√
T ). For t in this range, we write

Z(t) =

k0−1∑
n=1

cos(θ(t)− t logn)√
n

+ <(e−iθ(t)F (t)) +

m∑
n=k1+1

cos(θ(t)− t logn)√
n

+R(t)

where R(t) is the remainder term defined in (6) and where F (t) is a complex function defined
by

F (t) = F (k0 − 1, k1; t) :=

k1∑
k=k0

1√
k

exp(it log k) (7)

where k1 = b
√
T/(2π)c and k0 is a small fixed integer (we will discuss its value later). What

counts is that, for a given interval [T, T + ∆] and t in this range, the values of k0 and k1 are
fixed in our computations of Z(t). Since k0 is chosen as very small compared to T 1/2 and
since m − k1 is bounded (because ∆ = O(

√
T )), we see that the most time consuming part

in the computation of Z(t) is the computation of F (k0 − 1, k1; t). The rest of the technique
is mainly dedicated to fast evaluation of this sum.
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Main steps of the algorithm

To obtain fast evaluations of F (t) in the range [T, T + ∆], the Odlyzko-Schönhage algorithm
is divided in two steps :

• first, multi-evaluations of F (t) are computed on a well chosen regular grid of abscissa
for t.

• from these values, an interpolation formula permits to obtain efficiently any value of
F (t) at a certain accuracy when t stays in our range.

In the original Odlyzko and Schönhage algorithm of [24], multi-evaluations of not-only
F (t) were needed, but also multi-evaluations of derivatives of F (t) on the regular grid. An
important improvement of this have been obtained by Odlyzko (see [21]) that permits to have
an interpolation formula from multi-evaluations of F (t) only.

We first concentrate on the multi evaluation part of the algorithm, which requires numerous
treatments to make it efficient, and which is the most time consuming for computation at
very large height (say above the 1020-th zero). Interpolation considerations will be presented
afterward. Of course, the way the regular grid should be chosen in the previous step is
dependent of the interpolation formula.

2.3 Fast multi-evaluation of F (t) on a regular grid

We describe here how Odlyzko-Schönhage algorithm permits to evaluate efficiently approxi-
mations at a controlled accuracy of the values F (t) defined in (7) at evenly spaced values

t = T0, T0 + δ, . . . , T0 + (R− 1)δ.

We will later precise what values of δ and R we should choose. Instead of computing directly
the values F (T0), F (T0 + δ), . . ., F (T0 + (R − 1)δ), the key idea of [24] is to compute their
discrete Fourier transform, defined by

uk =

R−1∑
j=0

F (T0 + jδ)ω−jk, ω = exp(2iπ/R),

for 0 ≤ k < R. The property of the inverse Fourier transform gives

F (T0 + jδ) =
1

R

R−1∑
k=0

ukω
jk. (8)

In the algorithm, the value of R is chosen to be a power of two, so the values F (T0 + jδ) are
efficiently obtained from the (uk) with an FFT transform. As Odlyzko described in [22], we
found that this FFT takes a small portion of the total time (not more than a few percent of
the total time in our implementation, even using disk FFT for very large values of R). So the
problem is now reduced to computing efficiently the (uk). Using the definition (7) of F (t) and
exchanging the order of summations, we obtain that uk = ωkf(ωk), where f(z) is defined by

f(z) =

k1∑
k=k0

ak

z − bk
, bk = eiδ log k, ak =

eiT0 log k

k1/2
(1− eiRδ log k). (9)

The key point is now to compute efficiently the complex values f(ωk) for 0 ≤ k < R. The
approach presented in [24] and [22] is to use Taylor series expansions for different subset of
the indices in the sum. Given a complex number z0 on the unit circle and given L, 0 < L < 1,
consider for example the subset I of indices in {k0, k0 + 1, . . . , k1} such that |bk − z0| > L for
all k ∈ I. We have the Taylor series expansion

fI(z) ≡
∑
k∈I

ak

z − bk
=
∑
n≥0

An(z0 − z)n, An =
∑
k∈I

(z0 − bk)−n−1

valid for all z on the unit circle with |z − z0| < L. When restricting to z with |z − z0| < L/2
for example, the convergence of the Taylor series expansion is better than (1/2)n and a fixed
number of terms (say V ) in this expansion is sufficient to obtain a given absolute precision.
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Approximations of values fI(ω
j) for indices j such that |ωj − z0| < L/2 (let us call J this set

of indices) are then obtained from this Taylor series expansion. When the number of elements
in I is much bigger than the number of terms V used in the series expansion, this gives a
much more efficient method to compute the values (fI(ω

j))j∈J . This idea is used in [24] as a
basic ingredient of a sophisticated method that writes f(z) in the form

∑
fI` , the (I`) being

a partition of {k0, k0 + 1, . . . , k1} chosen such that Taylor series convergence of fI` is well
controlled. In our implementation, we used two different approaches which are more efficient.
The first approach, described in 2.3.1, is dedicated to computations of the Riemann Zeta
function at large but reasonable height (say until the 1013-th zero). The second approach,
suited to computations at larger height, is the Greengard-Rokhlin algorithm, that Odlyzko
presented in [22] as a possible improvement but he did not implement it in his computations.
Implementation aspects of the Greengard-Rokhlin algorithm are described in 2.3.2.

2.3.1 Fast multi-evaluations of f(ωk) at reasonable height

The approach of Odlyzko and Schöhnage for the computation of (f(ωk))0≤k<R is not optimal
for practical concerns. We propose another technique which benefits from several optimiza-
tions. First, it permits a certain flexibility that can be used at different recursive level of
the computation (tuning of the speed of convergence of approximating series for example).
Then we make use of a better approximation compared to the Taylor series expansion, which
permits to decrease the number of terms. Finally, instead of evaluating complex Taylor series
expansion of a complex variable, our approximations are computed from a function of a real
variable, and benefits additionally from symmetry in the abscissa. We did not implement
Odlyzko and Schönhage algorithm in order to have a precise estimation of the saving, but we
estimate that our approach is probably at least twice of three times faster (however, only a
constant factor is saved).

Chebychev interpolation. The basic ingredient in our approach is, instead of using
Taylor series of the complex variable z of ak/(z − bk), to use Chebychev interpolation of the
function ak/(e

iθ − bk) of the real variable θ. On the interval [θ0−L, θ0 +L], the interpolation
of degree N is performed on the abscissas

αj = θ0 + Lγj , γj = cos
(2j + 1)π

2N

and the resulting interpolating polynomial of a function G(θ) on this interval is

PN,θ0,L(θ) =

N−1∑
j=0

G(αj)RN (θ)

R′N (αj)(θ − αj)
, RN (θ) =

N−1∏
j=0

(θ − αj). (10)

When the singularities of G(θ) are far from the interval [θ0 − L, θ0 + L], this interpolating
polynomial is a good approximation to G(θ) in this interval. The following result gives a
quantitative information of the approximation bound.

Proposition 1 [Point interpolation error bound] Let

G(θ) =
∑

k

ak

bk − eiθ
, bk = eiβk

be a function of the real variable θ. Suppose that for all k,

‖βk − θ0‖ ≡ min
n
|βk − θ0 + 2nπ| > λL (λ > 1).

Then for all θ in [θ0 − L, θ0 + L] we have

|G(θ)− PN,θ0,L(θ)| < 4 + 21−N

(λ− 1)LK(λ)N

∑
k

|ak|, K(λ) = λ+
√
λ2 − 1,

where PN,θ0,L(θ) is the degree N Chebyshev interpolating polynomial of G(θ) other [θ0−L, θ0+
L] defined in (10).
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Proof : We make use of the residue theorem, from the integral on the complex domain of t∫
|t−θ0|=R

G(t)

RN (t)

dt

t− θ

where R = 2nπ. As n → ∞, the function G(t) stays bounded on |t − θ0| = R and we
obtain that this integral vanishes. Thus the sum of its residues vanishes. The residues of the
integrand are the points t = θ, the zeros αj of RN (t) and the poles βk + 2nπ of G(t), thus

G(θ)

RN (θ)
+

N−1∑
j=0

G(αj)

R′N (αj)(αj − θ)
+
∑

k

∞∑
n=−∞

ak

RN (βk + 2nπ)(βk + 2nπ − θ)
= 0.

This identity rewrites in a form that gives an explicit error term in the approximation obtained
with the interpolating polynomial

G(θ)− PN,θ0,L(θ) = E(θ), E(θ) =
∑

k

ak

∞∑
n=−∞

RN (θ)

RN (βk + 2nπ)(θ − βk + 2nπ)
.

The polynomial RN (t) is related to the [−1, 1] Chebychev polynomial TN (t) thanks to the
formula

RN (θ0 + Lt) =
LN

2N−1
TN (t), TN (t) = cos(N arccos(t)). (11)

which entails

E(θ) =
∑

k

ak

∞∑
n=−∞

TN ((θ − θ0)/L)

TN ((βk − θ0 + 2nπ)/L)(θ − βk + 2nπ)
.

Since |θ−θ0| < L, we have |TN ((θ−θ0)/L)| ≤ 1. Now we concentrate on TN ((βk−θ0+2nπ)/L).
We can choose βk modulo 2π such that the inequality∣∣∣∣βk − θ0 + 2nπ

L

∣∣∣∣ > |2n+ 1|λ

is always fulfilled. Since for real x and |x| > 1 we have

|TN (x)| = cosh(N arccosh(|x|)) > K(|x|)N

2
, K(x) = x+

√
x2 − 1,

we deduce

+∞∑
n=−∞

TN ((θ − θ0)/L)

TN ((βk − θ0 + 2nπ)/L)(θ − βk + 2nπ)

<

+∞∑
n=−∞

2

K(|2n+ 1|λ)N |2n+ 1|(λ− 1)L

<
2

K(λ)N (λ− 1)L

+∞∑
n=−∞

1

|2n+ 1|N+1
<

4 + 21−N

K(λ)N (λ− 1)L
,

where we have used the property K(kλ) > kK(λ). The result follows easily. •
In fact, it is cheaper in terms of performance to compute G and G′ at a given point rather

than computing G at two different points. This remark motivates an interpolation at point
and derivatives of G instead of points of G only. The previous proposition easily generalizes
to the following result :

Proposition 2 (Point and derivatives interpolation error bound) Under the assump-
tions of proposition 1, for all real values of θ such that |θ − θ0| ≤ L, we have

|G(θ)−QN,θ0,L(θ)| < 8 + 22−N

(λ− 1)LK(λ)2N

∑
k

|ak|, K(λ) = λ+
√
λ2 − 1,
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where QN,θ0,L(θ) is the degree 2N point-and-derivative Chebyshev interpolating polynomial of
G(θ) other [θ0−L, θ0+L], with interpolating abscissa (αj)0≤j<N . The interpolating polynomial
is defined by

QN,θ0,L(θ) =

N−1∑
j=0

(
G(αj)RN (θ)2

R′N (αj)2(θ − αj)2
− G(αj)R

′′(αj)RN (θ)2

R′N (αj)2(θ − αj)
+

G′(αj)RN (θ)2

R′N (αj)2(θ − αj)

)
.

Proof : The proof is similar to the previous one, starting from the contour integral∫
|t−θ0|=R

G(t)

RN (t)2
dt

t− θ

and taking into account residues of the integrand. •

Practical implementation of the interpolation. In our implementation, we used
the point-and-derivative Chebychev interpolation defined in proposition 2. Undesired numer-
ical errors can appear if one does not achieve the interpolation in the right way. To overcome
this problem, we keep a non expanded form of the interpolation which is described below.

It is convenient to express the interpolation on [−1, 1] instead of [θ0 − L, θ0 + L], which
writes in the form G(θ0 + Lt) ' QN (t) with

QN (t) =

N−1∑
j=0

(
G(θ0 + Lγj)TN (t)2

T ′N (γj)2(t− γj)2
− G(θ0 + Lγj)T

′′(γj)TN (t)2

T ′N (γj)3(t− γj)
+
LG′(θ0 + Lγj)TN (t)2

T ′N (γj)2(t− γj)

)
,

with γj = cos (2j+1)π
2N

and TN (t) = 2N−1∏
j(t − γj) the N -th Chebychev polynomial. The

interpolating polynomial QN (t) also writes as

QN (t) =

N−1∑
j=0

G(θ0 + Lγj)Vj(t) + LG′(θ0 + Lγj)Wj(t)

with Vj(t) and Wj(t) the interpolation base polynomials of degree 2N − 1 defined by

Vj(t) =
TN (t)2

T ′N (γj)2(t− γj)2
− T ′′N (γj)TN (t)2

T ′N (γj)3(t− γj)
=
∏
k 6=j

(
t− γk

γj − γk

)2
1− 2(t− γj)

∑
k 6=j

1

γj − γk


and

Wj(t) =
TN (t)2

T ′N (γj)2(t− γj)
= (t− γj)

∏
k 6=j

(
t− γk

γj − γk

)2

.

In fact, coefficients of the polynomials Vj(x) and Wj(x) are quite big compared to the evalu-
ations of these polynomials in [−1, 1], and this creates important numerical imprecisions. To
avoid them, it is much better to keep a non-expanded form of the polynomials. We define the
linear polynomials

Aj(t) =
1∏

k 6=j(γj − γk)

1− 2(t− γj)
∑
k 6=j

1

γj − γk

 and Bj(t) =
(t− γj)∏

k 6=j(γj − γk)
,

so that

Vj(t) =

∏
k 6=j

(t− γk)2

Aj(t), Wj(t) =

∏
k 6=j

(t− γk)2

Bj(t).

Now suppose that N is even. During the interpolation, we define the linear polynomials Lj(t)
by

Lj(t) = G(θ0 + Lγj)Aj(t) + LG′(θ0 + Lγj)Bj(t)

and then cubic polynomials Cj(t) (for j < N/2) by

Cj(t) = (t− γj)
2Ln−j(t) + (t− γn−j)

2Lj(t).

9



The symmetry of Chebyshev roots γj = −γn−j entails

QN (t) =
∑

0≤j<N/2

 ∏
k 6=j

0≤k<N/2

(t2 − γ2
k)2

Cj(t).

Taking into account additional easy factorizations, this form is well suited to fast and precise
evaluation of both QN (t) and QN (−t).

In our implementation, we choose the parameters λ = 2 and N = 8, that provide enough
precision for the Z(t) evaluation in the context of RH verification until the 1013-th zero.

Recursive process for fast computation of f(ωj). Recall that our objective is to
obtain a fast computation of the values f(ωj) where ω = exp(2iπ/R) and

f(z) =

k1∑
k=k0

ak

z − bk
, bk = eiβk , βk = δ log k.

Now suppose we want to compute approximations of the values f(ωj) for consecutive indexes
j = j0, j0 + 1, . . ., j1. We define jc = (j0 + j1)/2 and L = (j1 − j0)π/R. We construct the
subset I of indices in K = {k0, k0 + 1, . . . , k1} such that ‖βk − ωjc‖ > λL for all k ∈ I. The
contribution fI(ω

j), where

fI(z) =
∑
k∈I

ak

z − bk
,

can be approximated efficiently for values of j = j0, j0 + 1, . . . , j1 by using a point-and-
derivative Chebychev interpolation of fI(e

iθ) on the interval [2j0π/R, 2j1π/R] = [θ0−L, θ0+L]
where θ0 = 2jcπ/R ; moreover, the approximation error can be estimated thanks to propo-
sition 2. To obtain contribution on the remaining k indices in K − I, the process is made
recursive, by considering the two half of indexes j0, . . . , jc and jc + 1, . . . , j1 and considering
that the remaining set of k indices is K − I instead of K. When the number of j indices is
small, direct evaluation of fI(ω

j) is made instead of using the Chebychev interpolation. A
particular attention to numerical errors should be payed for cases for which ωj is very close
to a βk value. When this situation occurs, the stable expression

ak

ωj − bk
= −e

iT0 log k

k1/2
exp(−i((R+ 1)x+ δ log k))

sinRx

sinx
, x =

jπ

R
− δ log k

2
. (12)

should be used.
It is interesting to notice that, at each step of our recursive process, a different value of

λ and N (number of points considered for the interpolation) can be taken, giving potential
high flexibility to our algorithm. However, in our implementation, we did not make use of
this potential and kept the fixed values λ = 2 and N = 8 that gave good results. We choose
to implement the recursive process presented above by starting with four sets of j indices
corresponding to quarters of the complete j indices set.

2.3.2 Implementation of the Greengard-Rokhlin algorithm for huge height

When the number of k indices is much bigger than the number of j indices in the evaluations
of f(ωj), the Greengard-Rokhlin algorithm is much more efficient than the Chebychev inter-
polation based technique. This algorithm was first designed for Coulomb and gravitational
potentials evaluations (see [9]), and later subsequently improved, extended and applied to
other areas. Moreover, as described below, it is well suited to the use of disk memory since it
requires only a few number of memory access. In [22], Odlyzko presented this algorithm as a
possible improvement to his technique but did not implement it.

Instead of computing the Taylor series of the complex variable z of ak/(z − bk), the
Greengard-Rokhlin algorithm consists in computing the series in the variable 1/(z−c) outside
the pole c, by writing

ak

z − bk
=

ak

(z − c)
(
1− bk−c

z−c

) =

∞∑
n=0

ak(bk − c)n 1

(z − c)n+1
.

10



The approximation is obtained by considering only the first V most significant terms in this
sum (we will discuss the value of V later), thus giving

fK(z) =
∑
k∈K

ak

z − bk
≈

V−1∑
n=0

An(K, c)
1

(z − c)n+1

with
An(K, c) =

∑
k∈K

ak(bk − c)n. (13)

The values of coefficients An(K, c) when the pole c is moved satisfy a very nice property, that
makes the Greengard-Rokhlin algorithm so efficient. We have the shift formula

An(K, d) =

n∑
j=0

(
n

j

)
(c− d)n−jAj(K, c), (14)

thus once the values Aj(K, c) are known, the value of An(K, d) can be computed with O(n)
operations only. Since n is not too large (in the practice, it is smaller than V which is less
than 100), we save a lot of time compared to the use of definition formula (13) which is leads
to much more expensive computations when the set K is very large.

The recursive process of Greengard-Rokhlin algorithm For a subset K ⊂
{k0, k0 +1, . . . , k1} of k indices and a subset J ⊂ {0, 1, . . . , R−1} of j indices, the Greengard-
Rokhlin procedure, denoted by

GR(J,K)

computes approximations of the contributions fK(ωj) for j ∈ J , where

fK(z) =
∑
k∈K

ak

z − bk
, bk = eiβk .

It also returns a pole c and the sequence of coefficients An(K, c), defined in (13), for 0 ≤ n < V .
The recursive process to compute GR(J,K) is as follows :

• First the extremal values βmin and βmax of the sequence (βk)k∈K are computed. The

pole c is chosen as c = e
i
2 (βmin+βmax).

• If the number of elements in K or in J is “small” (say #K = O(V ) or #J = O(1)), then
the contributions fK(ωj) for j ∈ J are computed from the direct formula (for stability,
formula (12) should also be used if needed). The values An(K, c) for 0 ≤ n < V are
computed directly with formula (13).

• Else, we define

β′ =
βmin + βmax

2
, L =

βmax − βmin

2

so that the elements (βk)k∈K are in [β′−L, β′+L]. We then compute the subset J ′ of J

made of j indices which satisfy |ωj − eiβ′ | ≤ λ|1− eiL| (to fix ideas we can choose λ = 2,
but the λ factor can be any constant > 1). Then the process is called recursively twice :
first a call to GR(J ′,K1) is made, with K1 the subset of k indices defined by indices k
in K such that βk < β′, and then to GR(J ′,K2) where K2 = K \K1. The coefficients
An(K, c) for 0 ≤ n < V are then obtained with An(K, c) = An(K1, c)+An(K2, c), where
the coefficients An(K1, c) and An(K2, c) are obtained from An(K1, c1) and An(K2, c2)
with formula (14). As for the values fK(ωj), they are obtained as fK1(ω

j) + fK2(ω
j)

for j ∈ J ′, or with the Taylor approximation formula

fK(ωj) ≈
V−1∑
n=0

An(K, c)
1

(ωj − c)n+1
(15)

for j ∈ J \ J ′.

11



The error in approximation formula used in the last step can be controlled. In fact, we have

|An(K, c)| ≤
∑
k∈K

|ak| |eiβk − c|n ≤

(∑
k∈K

|ak|

)
|1− eiL|n,

thus an error bound on the approximation (15) for j ∈ J \ J ′ is given by

∑
n≥V

|An(K, c)| 1

|ωj − c|n+1
≤ 1

λ|1− eiL|

(∑
k∈K

|ak|

)∑
n≥V

1

λn
.

2.3.3 Comparisons between both approaches

The first approach, dedicated to computation of Z(t) at not too large height, and described
in 2.3.1, has the same complexity as the approach implemented by Odlyzko in [22], and is
equal to

nk1 logR,

n being the degree of the interpolating Chebyshev polynomial. As for the Greengard-Rokhlin
algorithm, its use gives a complexity of

k1V + V 2R.

Since n and V are fixed value of the same magnitude (in fact n is smaller than V due to
the best Chebychev interpolation, but by a constant factor; in our implementation, we have
n = 16 and V = 30) and are fixed, the comparison between both complexities give a significant
saving for Greengard Rokhlin approach when k1 is significantly bigger than R. Since in the
implementations, the number R, corresponding to the number of discretization points, will be
bounded by practical limiting factors (total available memory, including disk space, and total
timing) it means that for very large height (thus for very large values of k1), the Greengard
Rokhlin algorithm will be significantly faster.

This theoretical observation is confirmed by practical experiments done with our imple-
mentation, achieved for computations of the zeros of Z(t) near the 1013-th zero (in this case,
k1 ≈ 6.2× 105). The table in figure 1 gives the total multi-evaluation time of f(ωj) for both
approaches, for different values of R.

R First approach Greengard Rokhlin
65,536 8.56 s 1.73 s
131,072 9.3 s 2.89 s
262,144 9.9 s 4.14 s
524,288 10.8 s 8.12 s

1,048,576 12.1 s 13.47 s
2,097,152 14.2 s 32.3 s
4,194,304 18 s 50.6 s
8,388,608 25.4 s 151 s

Figure 1: Comparison of timing of multi-evaluation of f(ωj) for R values of j near height 1013, between
first approach, based on interpolating Chebychev polynomial and described in section 2.3.1, and Greengard
Rokhlin algorithm. As expected, the Greengard Rokhlin approach is significantly faster when R is small
compared to k1.

The Greengard Rokhlin algorithm has another very important property that permits to
deal with very large values of k1 : the values ak and bk can be computed on demand, since they
are needed only once, thus there is no need to store them, making this approach particularly
suited to very large values of k1. On the contrary, the first approach based on Chebychev
interpolation needs on the average logR access to the values ak and bk, and since computing
these values is not immediate (see below), it is better to store them. To overcome this limiting
memory factor at huge heights, it appears that one should cut the summation

∑
k ak/(z− bk)

into a collection of smaller summations (and repeat the process for each sub-summations),
thus increasing very significantly the total timing with the first approach.
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2.3.4 Additional considerations for multi-evaluation of F (t)

We focus here on three particular important topics that permit to achieve properly the multi-
evaluation of F (t). The first subject is related to the computations of the values ak and bk
of (9), for which some care is needed to ensure enough precision. The second topic is the FFT
step needed after the multi-evaluation of f(z) to retrieve the values F (T0 + jδ). The third
topic relates with an important optimization that permitted to decrease the multi-evaluation
time by roughly 30% to 40%.

Computing coefficients of the function f(z). In order to compute f(z), defined
in (9), one needs to compute properly the coefficients ak and bk, for which we recall the
definition

ak =
eiT0 log k

k1/2
(1− eiRδ log k), bk = eiδ log k (16)

In our implementation, we just make use of classic double floating point data type of C/C++
language, which provides floating point numbers with a mantissa of 53-bits (thus a little more
than 15 significant decimal digits). In our context, the values of T0 and R are very large
(the value of T0 can be bigger than 1020), so to get the values T0 log k (mod 2π) and Rδ log k
(mod 2π) at a relative double floating point precision, we need a special treatment. What
follows permits to compute efficiently the sequence

(uk)k0≤k≤k1 , uk = U log k (mod 2π)

at double precision, for a very large value of an integer U (say U of the order of 1020 or even
more).

First, we developed in our implementation a small module of multiprecision arithmetic,
permitting to compute with roughly 40 decimal digits of relative precision. This module has
not been optimized but since we use it a small portion of the time, it was sufficient for our
purpose. A single value uK can be computed with our multiprecision arithmetic module, but
at a relatively high cost, and the idea of our approach is to compute a large set of successive
values (uk) efficiently, given a precomputation of a reasonable cost. For a given index K, we
compute, thanks to the multiprecision module, 32-bits integers A and B and double floating
points values with maximal possible precision rA and rB such that

U

K
=

A

232
2π + rA (mod 2π),

U

2K2
=

B

232
2π + rB (mod 2π),

with 0 ≤ rA < 2π/232 and 0 ≤ rB < 2π/232. Now, once uK is computed, to get the values
uK+h we write

uK+h = uK + U log(1 + h/K) = uK + Uρ− U
ρ2

2
+ U

∑
j≥3

(−1)j−1 ρ
j

j
, ρ =

h

K
,

which leads to the formula

uK+h = uK +
Ah−Bh2 (mod 232)

232
2π + rAh− rBh

2 − U
∑
j≥3

(−1)j−1 ρ
j

j
(mod 2π).

In order to keep a good precision with this formula, we choose to restrict on values of h such
that 0 < h < 216 and such that Uρ3/3 ≤ 1, which is equivalent to

0 < h < min
(
216,K(3/U)1/3

)
.

Performing FFT. The final step to obtain a discretization of F (t) with Odlyzko-Schönhage
algorithm is to apply formula (8) to retrieve the values (F (T0 + jδ))0≤j<R from the sequence
(uk)0≤k<R. We performed this FFT by applying two recursive level of a four-step FFT algo-
rithm as described in [2], which is particularly suited to our context (very big size R of the
FFT, and disk memory used). Thanks to this effective approach, the time spent in FFT step
does not represent more than 5% to 10% of the total F (t) multi-evaluation step time.
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Decreasing the number of terms in the F summation. Odlyzko-Schönhage al-
gorithm permits to perform multi-evaluation of the function

F (a, b; t) :=
∑

a<k≤b

k−1/2+it.

Instead of applying directly this technique on the function F (k0 − 1, k1; t), we made use of a
rearrangement in order to decrease the number of terms in the sum, that proved to be efficient
in the practice. Separating terms of odd and even index in the summation, we get the identity

F (0, k1; t) =
∑

0<k≤k1
k odd

k−1/2+it +
∑

0<k≤k1/2

(2k)−1/2+it = Fodd(0, k1; t) + 2−1/2+itF

(
0,
k1

2
; t

)
,

(17)
where Fodd(a, b; t) can be multi-evaluated by Odlyzko-Schönhage algorithm and is defined by

Fodd(a, b; t) =
∑

a<k≤b
k odd

k−1/2+it.

The same identity (17) applied iteratively to F (0, k1/2; t) leads to

F (0, k1; t) = Fodd(0, k1; t) + 2−1/2+it

(
Fodd

(
0,
k1

2
; t

)
+ 2−1/2+itF

(
0,
k1

4
; t

))
.

After two additional iterations, on F (0, k1/4; t) then on F (0, k1/8; t) we get

F (0, k1; t) = Fodd(0, k1; t) + 2−1/2+itFodd

(
0,
k1

2
; t

)
+ 4−1/2+itFodd

(
0,
k1

4
; t

)
+ 8−1/2+itFodd

(
0,
k1

8
; t

)
+ 16−1/2+itF

(
0,
k1

16
; t

)
,

which finally writes as

F (0, k1; t) = 16−1/2+itF

(
0,
k1

16
; t

)
+ (1 + 2−1/2+it + 4−1/2+it + 8−1/2+it)Fodd

(
0,
k1

8
; t

)
+ (1 + 2−1/2+it + 4−1/2+it)Fodd

(
k1

8
,
k1

4
; t

)
+ (1 + 2−1/2+it)Fodd

(
k1

4
,
k1

2
; t

)
+ Fodd

(
k1

2
, k1; t

)
(18)

Now, instead of applying directly Odlyzko-Schönhage algorithm to F (k0−1, k1; t), we apply it
to each of the five terms in the above identity. After, we combine the multi-evaluation of each
term in the way described in formula (18) and use an additional substraction of F (0, k0−1; t)
to recover multi-evaluation of F (k0 − 1, k1; t). Since Fodd(a, b; t) has (b − a)/2 terms in the
summation, we see than the total number of needed summations using this technique is
k1/16 + 1/2(k1/8 + k1/8 + k1/4 + k1/2) = 9/16k1, so a saving of 43.75% compared to the
k1 summations needed in the direct use of the algorithm. But in addition here, we have
the extra-cost of computing 5 FFT of size R instead of one, and combining multi-evaluation
using (18). In the practice, because FFT is very fast, this extra-cost represented only a few
percent of the total time at large height so this technique proved to be useful even if precise
time saving has not be measured. The process could be of course refined, by applying more
iterations with formula (17) or, more generally, by applying transformations in the spirit
of Euler product but we expect that in the practice, it would probably not save significant
enough time and would require and additional complicated implementation.

2.4 Band limited function interpolation

From a discretization of F (t) on a regular grid, we now want to approximate any value of
F (t) thanks to an interpolation formula. We first state a general result about band-limited
function like F (t), which we will later use in our specific context.
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2.4.1 A general result on band-limited function interpolation

It is known that for a band-limited function of the form

G(x) =

∫ τ

−τ

g(t)eixt dt,

then under smooth conditions, G(x) is determined by its sampling at points nπ/τ value with
the “cardinal-series”

G(x) =

+∞∑
n=−∞

G
(nπ
τ

) sin(τx− nπ)

τx− nπ
.

However, this formula is not well suited to our context because its convergence is too slow.
Instead we will make use of an interpolation formula at more dense points nπ/β with β >
τ , which leads to a much better convergence. Our approach is based on complex analysis
techniques. It is different from the approach of Odlyzko in [22] and states results in a slightly
different form.

Proposition 3 Let G(z) be a complex function of the complex variable z = x+ iy defined on
the whole complex plane such that

|G(z)| = O(eτ |y|), τ > 0.

Let β > τ , and let a kernel complex function h(z) defined on the whole complex plane satisfying

h(0) = 1 and |h(z)| = o(eγ|y|), τ + γ ≤ β.

Then for any value of x we have

G(x) =

+∞∑
n=−∞

G

(
nπ

β

)
h(x− nπ/β)

sin(βx− nπ)

βx− nπ
. (19)

Proof : We start from the integral∫
G(z)

β

sin(βz)

h(x− z)

x− z
dz

where the contour is the circle |z| = (n+1/2)π/β and letting n→∞, we obtain that its value
is zero, thus the sum of all its residues is zero, which entails

G(x)
β

sin(βx)
=

+∞∑
n=−∞

(−1)nG

(
nπ

β

)
h(x− nπ/β)

x− nπ/β
,

yielding the result. •

2.4.2 Application to interpolation of the function F (t)

We want to compute sums of the form

F (t) =

k1∑
k=k0

k−1/2+it

thanks to an interpolation formula on a regular sampling of F (t). Instead of interpolating
directly F (t), we interpolate an intermediate function which has a lower growth in the complex
plane, defined by

G(t) = e−iαtF (t), α =
1

2
(log k0 + log k1) (20)

which satisfies

|G(z)| = O(eτ |y|), τ =
1

2
(log k1 − log k0).

We then define the parameters β = λτ (with λ > 1 being a fixed value, say λ = 2 for example)
and γ = β − τ . We choose the kernel function h(t) in the form

hM (t) =

(
sin(γt/M)

γt/M

)M
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with M a positive integer (we discuss this choice later). Now we are under condition of propo-
sition 3, so we can use formula (19) to interpol G(t) where we keep only the most significant
terms of the summations, applied not to the values G(nπ/β) themselves but to approxima-

tions Ĝ(nπ/β) of these values obtained with the preceding algorithm of approximation of F (t)
on a regular grid. Our key formula consists in computing the value

Ĝ(x) =
∑

n:|x−nπ/β|<Mu0/γ

Ĝ

(
nπ

β

)
hM (x− nπ/β)

sin(βx− nπ)

βx− nπ
. (21)

where u0 = 2.55.

Error bound estimation of approximation formula. Bound estimation of approx-
imation formula (21) is given in the following result.

Proposition 4 Suppose that the approximations Ĝ(nπ/β) satisfy∣∣∣∣Ĝ(nπβ
)
−G

(
nπ

β

)∣∣∣∣ < ε

for integers n such that |x− nπ/β| < Mu1/γ with u1 = 5.5, and suppose that M ≥ 2. Then

the value Ĝ(x), computed with formula (21), satisfies∣∣∣Ĝ(x)−G(x)
∣∣∣ ≤ AM,β,γ · ε+Bx,β,γ

(
CM +

γ

β
DM

)
+ 2

√
k1

(
EM +

γ

β
FM

)
.

where

AM,β,γ = 2
∑

0≤n<Mu0β/(γπ)

1

(n+ 1/2)π
hM

(
nπ

β

)
,

Bx,β,γ = ε+ max
n:|x−nπ/β|<Mu1/γ

|Ĝ(nπ/β)|,

and

CM = 2IM (Mu0), DM = 2JM (Mu0), EM = 2IM (Mu1), FM = 2JM (Mu1)

with

IM (u) =
1

π

∫ ∞

u

`M (t) dt, JM (u) =
`M (u)

2
+

1

2

∫ ∞

u

|`′M (t)| dt, `M (t) = (sin(t/M)/(t/M))M/t

Proof : Starting from equation (21), we first write∣∣∣Ĝ(x)−G(x)
∣∣∣ ≤ X · ε+ Y,

with

X =
∑

n:|x−nπ/β|<Mu0

∣∣∣∣hM (x− nπ/β)
sin(βx− nπ)

βx− nπ

∣∣∣∣
Y =

∑
n:|x−nπ/β|≥Mu0

∣∣∣∣hM (x− nπ/β)
sin(βx− nπ)

βx− nπ

∣∣∣∣ · ∣∣∣∣G(x− nπ

β

)∣∣∣∣ .
To obtain a bound on Y , we consider Euler-Maclaurin identity applied on a differentiable

function f(t) of the real variable t with rapid convergence to 0 at infinity

+∞∑
n=n0

f(n) =

∫ ∞

n0

f(t) dt+
f(n0)

2
+

∫ ∞

n0

(
x− [x]− 1

2

)
f ′(t) dt (22)

Starting from the inequality∑
n≥n0

∣∣∣∣hM (x− nπ/β)
sin(βx− nπ)

βx− nπ

∣∣∣∣ ≤ γ

β

∑
n≥n0

`M (nπγ/β − γx)
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and using identity (22) on the function f(t) = `M (tπγ/β − γx) we obtain the upper bound∑
n≥n0

∣∣∣∣hM (x− nπ/β)
sin(βx− nπ)

βx− nπ

∣∣∣∣ ≤ IM

(
n0πγ

β
− γx

)
+
γ

β
JM

(
n0πγ

β
− γx

)
. (23)

In the summation of Y the values of n for which |x − nπ/β| > Mu1/γ satisfy |G(nπ/β)| <∑k1
k0
k−1/2 < 2k

1/2
1 and for other values of n, |G(nπ/β)| < ε+ |Ĝ(nπ/β)| ≤ Bx,β,γ . We deduce

Y ≤ Bx,β,γ

(
CM +

γ

β
DM

)
+ 2

√
k1

(
EM +

γ

β
FM

)
.

Now we prove that X ≤ AM,β,γ . Let y, −1/2 < y ≤ 1/2, such that x = (n0 + 1/2 + y)π/β
for a (unique) integer n0. If |x−nπ/β| < Mu0/γ, then n is necessarily of the form n = n0−m
with −1−mmax < m < mmax, with mmax = Mu0β/(γπ). Thus

X ≤
∑

m:−1−mmax<m<mmax

∣∣∣∣hM

(
(m+ 1/2 + y)π

β

)
sin((m+ 1/2 + y)π)

(m+ 1/2 + y)π

∣∣∣∣ .
for convenience, we write this in the form

X ≤
∑

m:−1−mmax<m<mmax

gm(y), gm(y) = hM

(
(m+ y + 1/2)π

β

)
cos(yπ)

(m+ y + 1/2)π
.

For parity reasons, we have g−m−1(y) = gm(−y), thus

X ≤
∑

0≤m<mmax

cm(y), cm(y) = gm(y) + gm(−y).

The function y → hM ((m + y + 1/2)π/β) defined on y ∈ [−1/2, 1/2] is decreasing when
0 ≤ m < mmax thus its maximum is obtained for y = −1/2 and we deduce

cm(y) ≤ hM

(
mπ

β

)
bm(y), bm(y) = cos(yπ)

(
1

(m+ y + 1/2)π
+

1

(m− y + 1/2)π

)
.

To prove that X ≤ AM,β,γ , it now remains to prove that bm(y) ≤ bm(0) for −1/2 ≤ y ≤ 1/2
when 0 ≤ m < mmax, and since bm(y) is even, it suffices to prove that b′m(y) ≤ 0 for
0 ≤ y ≤ 1/2. We have

b′m(y) =
(2m+ 1) cos(πy)

π((m+ 1/2)2 − y2)

(
2y

(m+ 1/2)2 − y2
− π tan(πy)

)
,

thus on [0, 1/2], b′m(y) has the sign of

am(y) =
2y

(m+ 1/2)2 − y2
− π tan(πy).

We have am(y) ≤ a0(y) and an easy study of the function a0(y) shows that a0(y) ≤ 0 on
[0, 1/2], thus bm(y) is decreasing and the result follows. •

It is interesting to have the values of the involved parameters CM , DM , EM and FM for
typical values of M . Here are some numerical upper values.

M CM DM EM FM

2 0.0165 0.033 4.39× 10−3 5.91× 10−3

4 4.65× 10−4 7.19× 10−4 3.84× 10−5 4.55× 10−5

6 1.71× 10−5 2.51× 10−5 4.62× 10−7 4.63× 10−7

8 6.86× 10−7 7.93× 10−7 6.26× 10−9 5.84× 10−9

10 2.87× 10−8 3.02× 10−8 8.97× 10−11 7.62× 10−11

12 1.24× 10−9 1.20× 10−9 1.33× 10−12 1.04× 10−12

16 2.37× 10−12 2.03× 10−12 3.08× 10−16 2.11× 10−16

We also give an idea of the values of other parameters in the proposition. Typical values
of β and γ when computing around the 1012-th zero of ζ(1/2 + it) are β = 10 and γ = β/2.
For these values, we have

A4,β,γ ' 1.922, A8,β,γ ' 2.111, A12,β,γ ' 2.225, A16,β,γ ' 2.307.
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A typical value of k1 in this zone is also k1 ∼ 2× 105 ; a value of Bx,β,γ is very often smaller
than 10, thus a typical bound obtained from the proposition in this range is

|Ĝ(x)−G(x)| ≤ 1.922ε+0.135 (N = 4), |Ĝ(x)−G(x)| ≤ 2.111ε+3.87×10−5 (N = 8),

|Ĝ(x)−G(x)| ≤ 2.225ε+3.9×10−8 (N = 12), |Ĝ(x)−G(x)| ≤ 2.307ε+6.5×10−11 (N = 16).

2.4.3 Practical considerations on interpolation implementation

The interpolation formula (21) needs a number of terms roughly equal to

Mu0/π × β/γ ' 0.81Mβ/γ = 0.81M
λ

λ− 1
.

In order to decrease interpolation timing, one should use the smallest possible value of M
that permits to reach a given error bound thanks to proposition 4. While isolating roots of
the Z(t) function, a typical need is getting the sign of Z(t). In our implementation, each such
evaluation is done first with the smallest value of M = 2, then the interpolation formula is
used again for increasing higher values of M until the needed error bound (estimated with
proposition 4) is reached. In this way, we highly decrease on average the cost of the use of the
interpolation formula since the needed error is usually not too small. By comparison with a
technique with a fixed value of M = 16 for example, we estimate that a factor of 3 or 4 has
been saved in the interpolation computations. This is particularly important while evaluating
Z(t) at not too large height (say until the 1013-th zero) because in this range, interpolation
computations take approximately half of the total time.

Another trick we used to speed up the interpolation computations is the use of the iterative
formula

sin(x− (n+ 1)π/β) = sin(x− nπ/β)c− cos(x− nπ/β)s

cos(x− (n+ 1)π/β) = cos(x− nπ/β)c+ sin(x− nπ/β)s

with c = cos(nπ/β) and s = sin(nπ/β), which permits to obtain the values of sin(x − (n +
1)π/β) and cos(x− (n+ 1)π/β) from sin(x− nπ/β) and cos(x− nπ/β) faster than the direct
evaluation of sin(x−(n+1)π/β), thus the successive values of the kernel function hM (x−nπ/β)
evaluate efficiently. This trick is the reason of our choice of the kernel function hM (x). In
terms of implied speed of convergence, our kernel function is a little less efficient than the
kernel function chosen by Odlyzko in [22]

h(u) =
c

sinh c

sinh(c2 − ε2u2)1/2

(c2 − ε2u2)1/2
, ε =

β − τ

2
,

with c a constant that was equal to 30 is most computations, but since the kernel function
hM (u) evaluates faster, we globally save time.

Density of discretization. An important parameter is the value λ > 1 which is related
to the density of discretization of the function F (t) =

∑
k0≤k≤k1

k−1/2+it. Remember that
the discretization is made with a regular step equal to

δ =
π

β
=

2π

λ log(k1/k0)
,

whereas the cost of one interpolation from the discretization is proportional to λ/(λ − 1).
In our implementation, the choice of λ was made in relation with the relative cost of the
discretization of F (t) and the interpolation. Until the 1013-th zero for example, each of the
discretization or interpolation part take approximately half of the time, and the value λ = 2
was chosen. As the height increases, the relative cost of the discretization becomes bigger and
a smaller value of λ > 1 was taken. Around the 1022-th zero for example, we have chosen the
value λ = 6/5.

Another way to decrease the needed density of discretization was to increase the value of
k0. Until the 1013-th zero, we have taken k0 = 6. Around the 1022-th zero, the choice k0 = 30
was made. These values have been chosen with a heuristic based on rough timing experiments
and are probably not optimal.
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2.4.4 More accurate approximation of Z(t)

In some rare cases (especially between two very close zeros), it may be useful to compute Z(t)
more accurately to separate zeros of it. While using the band-limited function interpolation
technique to compute Z(t), this imply to compute the multi-evaluation of F (t) at a high
precision, which would have some bad impact on the total timing. We preferred to use
a different technique : when the required precision on Z(t) was higher than the available
precision issued from the band-limited function interpolation, we computed Z(t) directly with
the classic direct use of the Riemann-Siegel formula (6). In this way, the Odlyzko-Schönhage
algorithm is used with reasonable parameters so that almost all Z(t) evaluations are computed
precisely enough, thus controlling the total timing.

Nearly all the time in the direct computation of Z(t) from the Riemann-Siegel is spent in
the summation

m∑
n=1

cos(θ(t)− t logn)√
n

, m =

⌊√
t

2π

⌋
. (24)

Instead of using directly this form, we used an Euler-product form of the value

F (t) =

m∑
k=1

k−1/2+it,

and taking the real part of e−iθ(t)F (t) gives the expected value. An Euler-product form of
F (t) (as described in [22]) is obtained by considering the product P = 2 × 3 × · · · × ph of
the first h primes (with h small in the practice, say h ≤ 4) and by considering the set Q of
integers all of whose prime factors are smaller than ph. It permits to reduce the summation
to integers k relatively prime to P , with the formula

F (t) =
∑

0<k≤m
(k,P )=1

k−1/2+its(m/k), s(a) =
∑

0<`≤a
`∈Q

`−1/2+it. (25)

Since the s(m/k) for 0 < k ≤ m are the same for many k the summation above is much
more efficient than the direct summation for F (t), and the asymptotically expected factor is
at most φ(P )/P = (1− 1/2)(1− 1/3)× · · · × (1− 1/ph).

We implemented this technique, and as can be seen on the table of figure 2, we nearly save
a factor 3 compared to the direct use of the summation (24) at large height.

Height index Classic ph = 2 ph = 3 ph = 5 ph = 7
1014 1.19 0.92 0.82 0.76 0.77
1016 7.86 5.98 4.91 4.45 4.36
1018 60.48 39.92 32.18 28.8 27.6
1020 473.50 299.79 238.90 210.08 197.31
1022 4050.86 2501.24 1951.19 1668.51 1577.33
1024 36909.16 22361.02 16842.16 14840.87 13584.88

Figure 2: Comparison of timing of a single evaluation of Z(t) between classic summation (24) and faster
formula (25) with 1, 2, 3 or 4 primes. The first column contains a zero index n near the evaluation
(so evaluation was made near t = gn where gn is the n-th Gram point). The timings are in seconds,
computation was made on a Pentium m 1.6 Ghz.

In our program, notice that we always performed at least one very accurate evaluation of
Z(t) in this way per range where Odlyzko-Schönhage algorithm was used, in order to check
correctness of the computation. Other needed very accurate evaluation of Z(t) to separate
zeros of it were very rare (say a few units per billion zero on average).

3 Verification of the Riemann Hypothesis until the
1013-th zero

Our first family of computations consisted in verifying that until the 1013-th zero, all zeros
of the Riemann Zeta function lie on the critical line <(s) = 1

2
. In order to verify the RH, we
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do not need precise computations abscissa of zeros, counting them by finding enough changes
of sign of Z(t) is sufficient. At higher ranges (see next section) we computed in addition
the abscissa of zeros of Zeta (as Odlyzko did in [22]) in order to collect more statistics. The
advantage of verifying the RH only relies in computational timing : while verifying the RH
until the 1013-th zero, we needed on average less than 1.2 evaluations of the Z(t) function
per zero to locate them, whereas to be able to compute abscissa of zeros in this range, we
would have needed at least five or six times more evaluations of Z(t). Since the verification
of the RH on the first 1013 zeros took a little more than one year and a half of a single
modern computer (and the same for verification), timing was a crucial aspect that motivates
our choice of restricting on RH verification only in this range.

3.1 Gram points, Gram blocks

We recall the formula, already seen in (4)

ζ( 1
2

+ it) = e−iθ(t)Z(t)

with θ(t) and Z(t) real valued functions. When t ≥ 7, the θ(t) function is monotonic increas-
ing ; for n ≥ −1, the n-th Gram point gn is defined as the unique solution > 7 to

θ(gn) = nπ.

The Gram points are as dense as the zeros of ζ(s) but are much more regularly distributed.
The asymptotic formula (5) of θ(t) entails that

gn ∼
2nπ

log(n)
.

Starting with the approximation

1

2
Z(gn) ≈ cos θ(gn) +

∑
2≤n≤m

cos(θ(gn)− gn logn)√
n

= (−1)n

1 +
∑

2≤n≤m

cos(gn logn)√
n


we see that the leading term in expansion of Z(gn) has the sign of (−1)n. This motivates
Gram’s law, which is the empirical observation that Z(t) usually changes its sign in each
Gram interval Gn = [gn, gn+1), that holds in Gram’s computations [8]. It is known that this
law fails infinitely often, but it is true a large proportion of cases (more than 70% at not too
large height, more than 66% at larger height).

A Gram point gn is called good if (−1)nZ(gn) > 0, and bad otherwise. A Gram block is
an interval [gn, gn+k) such that gn and gn+k are good Gram points and gn+1, . . ., gn+k−1

bad Gram points. A Gram block is denoted by the notation a1a2 . . . ak where k is called the
length of the Gram block, and ai denote the number of roots of Z(t) in the Gram interval
[gn+i−1, gn+i). As of today, no Gram interval has been found with more than 5 zeros, thus
the notation is unambiguous.

Most Gram blocks of length k contain exactly k zeros (see below for the discussion about
violations of Rosser rule) ; such Gram blocks are called regular. Regular Gram blocks must
have a pattern of one of the following three forms

21 . . . 10, 01 . . . 12, 01 . . . 131 . . . 10.

where the notation 1 . . . 1 refers to any string of consecutive 1, including zero length string.

Violations of Rosser rule

Another important empirical rule, known as Rosser rule, states that Gram blocks of length k
contains at least k zeros. In fact, if this rule would be true, then it would imply the RH, which
would imply that each Gram block of length k contains exactly k zeros. Violations of Rosser
rule are quite rare. The first occurrence of such a violation is at index n = 13, 999, 825 and
until the 1013-th zero, there is just a little more than 32 violations of Rosser rule on average
per million zeros. It is known that Rosser rule has to fail infinitely often.
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If a Gram block of length k is an exception to Rosser rule, then its pattern of zeros must
be of the form 01 . . . 10. To describe the exception, we must specify where the two missing
zeros are. We use the notation

kXa1 . . . am, X = L or R (26)

to describe an exception on a Gram block of length k where the missing zeros are on the
left (for X = L) or on the right (for X = R), the pattern containing the missing zeros being
a1 . . . am (moreover, this pattern is the smallest union of Gram block adjacent to the exception
that contains the missing zeros). For example, 3L04 denotes a violation of Rosser rule on
a Gram block of length 3, the missing zeros being at its left. Globally, the pattern of zeros
expressed by the notation is 04010.

We refer to (26) as the type of violation of Rosser rule, the value m being called the
length of the excess block. Notice that the notation used for exception to Rosser rule is not
unambiguous. When several contiguous violation of Rosser rule exists, they may overlap or
missing zeros can be in the same Gram interval. When such very rare situation occurs (we
found just it three times until the 1013-th zero), we simply use the notation Ma1 . . . a` where
the pattern a1 . . . a` is made of the minimal contiguous Gram blocks containing at least one
violation to Rosser rule, and all the missing zeros. For example, the pattern M00500, first
encountered at gram index n = 3, 680, 295, 786, 518, denotes a situation with two violations
of Rosser rule (“00” and “00”, Gram blocks with missing zeros) and a single Gram interval
containing all the missing zeros (pattern “5”).

3.2 Approach used to locate all zeros

To verify Riemann Hypothesis until the 1013-th zero, we made use of the Odlyzko Schönhage
approach presented in section 2, associated to the first variant presented in subsection 2.3.1, to
compute the Riemann-Siegel Z-function. Evaluating the Z-function permits to find changes
of sign of Z(t), thus to locate some zeros of it, but may be not enough to verify the Rie-
mann Hypothesis. We made use of the Turing’s method presented below, that permits, once
“enough” roots have been located on the critical line in a certain zone, to prove that all roots
of ζ(s) lie on the critical line in this zone.

Regular Gram points and Turing’s method

It is known that the number of zeros of ζ(σ + it) for 0 < σ < 1 and 0 < t < T , denoted by
N(T ), satisfies

N(T ) = 1 +
θ(T )

π
+ S(T ),

with S(t) = 1
π

arg ζ( 1
2
+ it). Von Mangoldt proved that S(T ) = O(log T ). In 1924, Littlewood

proved that
∫ T

0
S(t) dt = O(log T ). Thus Littlewood result states that the average value of

S(t) is zero, whereas Von Mongoldt result proves that S(t) is not too large. Since the zero
value of S(T ) is the “standard”, we say that a Gram point gn is regular if S(gn) = 0, which
is equivalent to N(gn) = n + 1. A regular Gram point is a good Gram point in the sense of
the above definition.

One of the key point in RH verification is the ability to find regular Gram points. Once
regular Gram points are found, it suffices to check that between them, the expected number
of change of sign of Z(t) occurs, in order to numerically check the RH in this zone.

A possibility to find regular Gram points would be to use Backlund’s method, which
consists in proving when possible that the real part of ζ(σ + iT ) is never zero for 1

2
≤ σ ≤ 3

2
.

The disadvantage of this method is that it requires evaluations of ζ(s) out of the critical
line. To overcome this difficulty we used Turing’s method (see [7] for a complete description)
which permits to prove that some Gram points are regular, by evaluating Z(t) only. Turing
approach is briefly described as follows : when locating zeros of Z(t), a sequence (hn) is found
such that (−1)nZ(gn + hn) > 0, the sequence (gn + hn) being increasing, with hn small and
zero whenever possible. Turing showed that if hm = 0 and if values of hn for n near m are not
too large, then gm is a regular Gram point. More precisely, Turing obtained a quantitative
version of Littlewood estimate∣∣∣∣∫ t2

t1

S(t) dt

∣∣∣∣ ≤ 2.30 + 0.128 log
t2
2π
,
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from which he was able to prove that for all k > 0, we have

−1−
2.30 + 0.128 log gm

2π
+
∑k−1

j=1 hm−j

gm − gm−k
≤ S(gm) ≤ 1 +

2.30 + 0.128 log
gm+k

2π
+
∑k−1

j=1 hm+j

gm+k − gm
.

When k > 0 is found for which those estimates give −2 < S(gm) < 2, then since for parity
reason, S(gm) is always an even integer, we prove that S(gm) = 0.

Locating zeros

To locate zeros of Z(t) in a zone, we followed a heuristic approach based on the zeros statistics,
in order to decrease as much as possible the number of evaluations needed to locate all zeros
of Z(t). The underlying idea was that each Gram interval is associated to a unique zero of
Z(t) in this Gram interval or very close to it. We first computed the value of Z(t) at each
Gram point (in fact the sign of Z(t) is sufficient). This permitted to compute Gram blocks,
and then missing changes of sign in Gram blocks were searched in most statistical frequent
places order, with easy heuristics. Among the search techniques, we used the observation that
under the RH, |Z(t)| cannot have any relative minima between two consecutive zeros of Z(t)
(see [7] for a proof of it that holds under the RH for t not too small). This property gives a
very powerful search method : if a < b < c and |Z(b)| < |Z(a)|, |Z(b)| < |Z(c)| with Z(a),
Z(b) and Z(c) having the same sign, then we should have at least two zeros between a and c
(under the RH).

This simple approach permitted to find the pattern of most Gram blocks. When this
simple approach did not work, it meant that we could have a violation of Rosser rule, so
we looked in a neighborhood if a missing change of sign could occur. If yes, we had found
an exception to Rosser rule, otherwise, we tried much aggressive techniques to look for the
missed change of sign.

This approach permitted to locate quite easily most zeros of Z(t) and since aggressive
searches were performed only a very small fraction of the time, the average number of eval-
uations of Z(t) per zero was only 1.193 until the 1013-th zero, which is nearly optimal. As
expected also, the average number of evaluations of Z(t) per zero needed increases with the
height of zeros : until zero number 2 × 109 for example, this average number of evaluations
was just 1.174. Thus in a certain manner, and as “measured” by our internal indicator, the
“complexity” of Z(t) increases when t gets large.

3.3 Statistical data in RH verification until the 1013-th zero

We now present statistical data that we generated while verifying the RH on the first 1013

zeros.

3.3.1 Computation information

Computation was distributed on several machines and in total, it took the equivalent of 525
days of a single modern computer in 2003 (Pentium 4 processor 2.4 Ghz), thus 220,000 zeros
checked per second on average. Required memory was also classic for such computers (256
Mo were sufficient). The computation was made in different periods between April of 2003
and September of 2003, using spare time of several machines, and could be performed thanks
to Patrick Demichel who could access to computer spare time and managed this distributed
computation.

Computational results for the RH verification on the first 1013 zeros are based on proved
inequality estimates of this paper. The computation was checked in too ways : first, after each
application of Odlyzko-Schönhage algorithm in a certain range, evaluations at two different
abscissas in this range were compared with the classic direct use of Riemann-Siegel formula.
This check is in fact quite global, in the sense that a single evaluation using Odlyzko-Schönhage
technique depends on all the result of the multi-evaluation of f(z) (see section 2.3). Another
check was done that consisted in re-launching all the computation with different parameters
(we changed slightly a certain number of free parameters of our approach), and by checking
that the same number of zeros were found in the same zones. This second check took an
additional one year and a half time (equivalent timing of one modern computer).
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3.3.2 Statistics

First of all, no exception to Riemann Hypothesis were found on the first 1013 zeros. As already
discussed before, computations until the 1013-th zero essentially consisted in computing the
number of zeros in each Gram interval and not the zeros themselves.

Particular situations. Some particular situations have been observed that did not ap-
pear historically in previous ranges of RH verification.

• One Gram interval has been found which contains 5 zeros of the Zeta function (at index
3,680,295,786,520). All other Gram interval contained 4 zeros or less.

• Largest Gram block length found is 13, and first occurrence of Gram block of size 11,
12 and 13 have been found :

– The first Gram block of size 11 is at Gram index 50,366,441,415.

– The first Gram block of size 12 is at Gram index 166,939,438,596.

– The first Gram block of size 13 is at Gram index 1,114,119,412,264.

• Three times, we found pairs of close violations of Rosser rule for which the missing zeros
were merged in common Gram intervals :

– The pattern M00500 was found at Gram index 3,680,295,786,518.

– The pattern M002400 was found at Gram index 4,345,960,047,912.

– The pattern M004200 was found at Gram index 6,745,120,481,067.

• The smallest known normalized difference δn between consecutive roots γn and γn+1 of
Z(t), defined by

δn = (γn+1 − γn)
log(γn/(2π))

2π
,

was found at γn = 1034741742903.35376 (for index n = 4, 088, 664, 936, 217), with a
value of δ ≈ 0.00007025. Non normalized difference between those roots is equal to
0.00001709 . . ..

Closest found pairs of zeros. Close pairs of zeros are interesting because it corresponds
to cases for which the RH is “nearly” false. Verifying the RH in zones where two zeros are very
close is a particular situation (often described as the “Lehmer’s phenomenon” since Lehmer
was the first to observe such situations, see [7] for more details) that was detected in our
implementation thanks to some simple heuristics. In such detected situations, we computed
effectively the close zeros and their difference. In this way, even if all zeros abscissas were not
computed, we were able to find a large number of close zeros. As the technique used to find
them is based on a heuristic, some pairs of close zeros may have been missed. However, we
estimate that for very close zeros (say those for which δn < 0.0002) most (and probably all)
pairs of close zeros have been found.

We recall our notations : the value γn denotes the abscissa of the n-th zero, the value δn

denotes the normalized spacing at the n-th zero

δn = (γn+1 − γn)
log(γn/(2π))

2π
.

To give an idea of the number of close pairs of zeros we may have missed with our simple
heuristic, we recall that under the GUE hypothesis (see section 4.2), until the N -th zero, the
expected number of pairs of consecutive zeros for which δn is less than a small value δ is
asymptotic to

E(δ,N) = N
π2

9
δ3 +O(Nδ5)

(see [22, p. 30] for example). In our case, N = 1013, so E(0.0001, N) ' 10.96 and we found
exactly 13 zeros such that δn < 0.0001. We have E(0.0002, N) ' 87.73 and we found exactly
86 zeros such that δn < 0.0002. So for such small values of δn, we are close to the GUE
expectations. Higher values of δ show that our heuristic probably missed close pairs of zeros.
For example, we found 1240 zeros for which δn < 0.0005 whereas the GUE hypothesis expects
E(0.0005, N) ' 1370.78 such zeros.
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The table below lists statistics relative to all closest found pairs of zeros for which δn <
0.0001 (it may not be extensive). The last column gives values of εn which is an error upper
bound on the value γn+1 − γn.

δn γn+1 − γn γn n εn
0.00007025 0.00001709 1034741742903.35376 4,088,664,936,217 1.45E-08

0.00007195 0.00001703 2124447368584.39307 8,637,740,722,916 4.59E-08

0.00007297 0.00001859 323393653047.91290 1,217,992,279,429 1.29E-08

0.00007520 0.00001771 2414113624163.41943 9,864,598,902,284 1.69E-08

0.00008193 0.00002420 10854395965.14210 3,5016,977,795 4.46E-09

0.00008836 0.00002183 694884271802.79407 2,701,722,171,287 1.74E-08

0.00008853 0.00002133 1336685304932.84375 5,336,230,948,969 5.88E-08

0.00008905 0.00002127 1667274648661.65649 6,714,631,699,854 4.53E-08

0.00008941 0.00002210 693131231636.82605 2,694,627,667,761 3.19E-08

0.00009153 0.00002158 2370080660426.91699 9,677,726,774,990 1.38E-07

0.00009520 0.00002495 161886592540.99316 591,882,099,556 1.73E-08

0.00009562 0.00002367 664396512259.97949 2,578,440,990,347 4.09E-08

0.00009849 0.00002756 35615956517.47854 121,634,753,454 7.63E-09

Statistics on Gram blocks. First, statistics on Gram blocks are not completely rigorous
since when the evaluation of Z(t) at a Gram point t = gn gave a too small value compared to
the error bound (so we were not able to decide the sign of Z(t)), we changed a little bit the
value of gn (this trick does not affect the RH verification). Thus the statistics in the table
below contains a very small proportion of errors. However, it gives a very good idea of the
repartition of Gram block until the 1013-th zero.

Below is a table that contains the number of Gram blocks found between zero #10,002
and #1013 + 1. Gram block of type I are those with pattern 21 . . . 10 (except for Gram block
of length 1 where it is just the pattern 1), type II corresponds to pattern 01 . . . 12, type III
corresponds to pattern 01 . . . 131 . . . 10.

Length of Gram block type I type II type III

1 6,495,700,874,143

2 530,871,955,423 530,854,365,705 0

3 137,688,622,847 137,680,560,105 12,254,585,933

4 41,594,042,888 41,590,457,599 4,713,328,934

5 11,652,547,455 11,651,049,077 1,677,257,854

6 2,497,894,288 2,497,449,668 582,216,827

7 335,440,093 335,304,175 186,090,022

8 22,443,772 22,427,099 47,938,397

9 552,727 553,654 8,667,047

10 3,137 3,114 1,081,811

11 0 1 93,693

12 0 0 4,967

13 0 0 122

Violations of Rosser rules In our verification of the RH until the 1013-th zero, we found
320,624,341 violations of Rosser rules (here again, the statistic is not completely rigorous, as
explained above). So we have an average of about 32.06 violations of Rosser rules per million
zero. Rosser rules fails more and more often with the height, as shown in the table below which
contains the number of violations of Rosser rule (VRR) in different ranges of our computation.
Table below also shows that the number of type of VRR (see (26)) also increases with the
height.
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Zero index range Number of VRR Number of types of VRR

0− 1012 20007704 121

1012 − 2× 1012 26635210 147

2× 1012 − 3× 1012 29517546 160

3× 1012 − 4× 1012 31476295 159

4× 1012 − 5× 1012 32970500 172

5× 1012 − 6× 1012 34192167 186

6× 1012 − 7× 1012 35211583 179

7× 1012 − 8× 1012 36108621 184

8× 1012 − 9× 1012 36893156 192

9× 1012 − 1013 37611559 193

In total, we found 225 different types of violations of Rosser rules. The table below shows
the most frequent encountered types on all the first 1013 zeros.

Type of VRR Number of occurrence Frequency

2L3 77146526 24.061%

2R3 77119629 24.053%

2L22 43241178 13.487%

2R22 43232794 13.484%

3L3 19387035 6.047%

3R3 19371857 6.042%

2L212 7992806 2.493%

2R212 7986096 2.491%

3L22 6644035 2.072%

3R22 6641646 2.071%

4L3 2326189 0.726%

4R3 2321577 0.724%

2R2112 716337 0.223%

2L2112 714976 0.223%

2L032 614570 0.192%

2R230 614407 0.192%

3L212 527093 0.164%

3R212 524785 0.164%

4L22 366441 0.114%

4R22 365798 0.114%

2L04 363861 0.113%

2R40 363174 0.113%

Among the more rare types, we found for example the patterns 7R410 (occurs once at index
2,194,048,230,633) and 2L011111114 (occurs twice). We found 17 different types that were
encountered only once, 11 that were encountered just twice.

Large values of Z(t). The largest value of |Z(t)| = |ζ(1/2 + it)| found until the 1013-th
zero was for t = 2381374874120.45508 for which we have |Z(t)| ' 368.085, but since no special
treatment was made to find biggest values of |Z(t)|, bigger values probably exist and were
missed in our computation.

4 Zeros computations of the Zeta function at very
large height

The second type of computations we performed consisted in computing a large number of zeros
at large height. This time, we did not restrict on RH verification, but we also approximated
quite precisely all zeros in our ranges in order to get a larger collection of statistics. Our
main goal here was to test the GUE hypothesis which conjectures a certain distribution of the
spacing between the zeros of the zeta function. The GUE hypothesis is discussed below in
section 4.2. As we will see, computations show a good agreement with this conjecture, and
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moreover we have observed empirically the speed of the convergence toward the conjectured
distribution.

We considered a collection of heights 10n for all integer values of n between 13 and 24,
and a set of two billion zeros was computed at each height. Our largest reached height 1024

is larger than the height reached before by Odlyzko in unpublished result (Odlyzko computed
50 billion zeros at height 1023).

4.1 Approach to compute zeros at large height

Since the abscissas considered here are very large, we made use of the Greengard-Rokhlin
algorithm (see section 2.3.2) to compute values of the Z(t) function. As discussed in 2.3.3,
this method is much more efficient in the large height context.

The approach consisted in locating first the zeros as done in the first family of computations
(see section 3.2), and then to perform a few iterations to approximate the abscissa of each
zero with a precision of about 10−9. On average, we needed about 7.5 evaluations of the
Z(t) function per zero here, while only about 1.2 evaluations were needed per zero in the RH
verification until the 1013-th zero.

Managing precision control

We are dealing here with very large heights (largest height computations were made around
the 1024-th zero), making the precision management one of the key success factors. Since
double precision storage only was used (thus a little more than 15 decimal digits of precision),
the error bound on a sum like

k1∑
k=k0

k−1/2 cos(t log k)

would be of the form

E =

k1∑
k0

εkk
−1/2

where for all k, εk is the imprecision on the value of cos(t log k). Due to our techniques in the
computation of t log k modulo 2π, a typical precision for εk is |εk| < ε, say with ε = 10−12.
Without any additional information, we would only deduce that the total error E is bounded
by

|E| ≤
k1∑
k0

|εk|k−1/2 ≤ ε

k1∑
k0

k−1/2 ∼ 2k
1/2
1 ε. (27)

Around the 1024-th zero, the value of k1 is around k1 ' 1.3 × 1011, thus we would obtain
|E| < 0.73 × 10−6. This error bound is too large in our context, since separations of some
zeros frequently needs a higher precision. For performance reason, we obviously did not
want to rely on multiprecision operations, so we needed to deal with our double precision
storage. Since in the practice, the true error E is much smaller than (27), we preferred to
use a statistically reasonable error bound. Based on the observation that εk can be seen as
independent variables, taking any values between −ε and +ε, the typical error bound on E
has the form

|E| ≤

 k1∑
k0

(εk−1/2)2

1/2

∼ ε(log k1)
1/2. (28)

Around the 1024-th zero, this gives an error of the order 5 × 10−12 instead of 0.73 × 10−6,
which is closer to the true error bound, and which gives enough precision to separate zeros of
Zeta. Following this observation, in our large height context, anytime we add a sum of terms
of the form

S =
∑

k

fk

each fk having an imprecision bounded by εk, we expected for the error on S and error of the
order

|E| =

(∑
k

ε2k

)1/2
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(multiplied by a certain security factor, equal to 10 in our implementation) instead of the
very pessimistic classic bound |E| ≤

∑
k εk. This kind of statistical error control was also

used by Odlyzko in his large height computations (see [22, Section 4.6]). Thanks to this
important error management, we have been able to control the precision with enough accuracy
to separate zeros in our large height computations. Even if we did not use rigorous error bound
but rather statistical one in our implementation, the computational results are thought to be
accurate, as discussed below.

Computational correctness

Especially at very large height, controlling correctness of computational results is fundamental.
Several ways to check the computational results were used. First, after each application of
Odlyzko-Schönhage algorithm in a certain range, an evaluation at a certain abscissa in this
range was compared with the classic direct use of Riemann-Siegel formula. As observed earlier,
this check validates in some sense all the result of the multi-evaluation of f(z) (see section 2.3).
Another check was done that consisted in re-launching all the computation in some ranges
with different parameters (some free parameters in multi-evaluation techniques were changed)
and by computing the difference between computed zeros (see table in section 4.3.5 below for
more information). Finally, as observed by Odlyzko in [22] the RH verification itself is also a
check since a slight error anywhere in the evaluation of Z(t) may lead to RH violations.

4.2 The GUE hypothesis

While many attempts to prove the RH had been made, a few amount of work has been
devoted to the study of the distribution of zeros of the Zeta function. A major step has
been done toward a detailed study of the distribution of zeros of the Zeta function by Hugh
Montgomery [19], with the Montgomery pair correlation conjecture. Expressed in terms of

the normalized spacing δn = (γn+1 − γn) log(γn/(2π))
2π

, this conjecture is that, for M →∞

1

M
#{(n, k) : 1 ≤ n ≤M,k ≥ 0, δn + · · ·+ δn+k ∈ [α, β]} ∼

∫ β

α

1−
(

sinπu

πu

)2

du. (29)

In other words, the density of normalized spacing between non-necessarily consecutive zeros
is 1− (sin(πu)/πu)2. It was first noted by the Freeman Dyson, a quantum physicist, during a
now-legendary short teatime exchange with Hugh Montgomery, that this is precisely the pair
correlation function of eigenvalues of random hermitian matrices with independent normal
distribution of its coefficients. Such random hermitian matrices are called the Gauss unitary
ensemble (GUE). As referred by Odlyzko in [20] for example, this motivates the GUE hypoth-
esis which is the conjecture that the distribution of the normalized spacing between zeros of
the Zeta function is asymptotically equal to the distribution of the GUE eigenvalues. Under
this conjecture, we might expect a stronger result than (29), that is

1

M
#{(n, k) : N+1 ≤ n ≤ N+M,k ≥ 0, δn+· · ·+δn+k ∈ [α, β]} ∼

∫ β

α

1−
(

sinπu

πu

)2

du (30)

with M not too small compared to N , say M ≥ Nν for some ν > 0. Another result under
the GUE hypothesis is about the distribution of the δn itself,

1

M
#{n : N + 1 ≤ n ≤ N +M, δn ∈ [α, β]} ∼

∫ β

α

p(0, u) du (31)

where p(0, u) is a certain probability density function, quite complicated to obtain (see (32)
for an expression of it). As reported by Odlyzko in [22], we have the Taylor expansion around
zero

p(0, u) =
π2

3
u2 − 2π4

45
u4 +

π6

315
u6 + · · ·

which under the GUE hypothesis entails that the proportion of δn less than a given small
value δ is asymptotic to (π2/9)δ3 +O(δ5). Thus very close pairs of zeros are rare.

Previous computations by Odlyzko [20, 21, 22, 23], culminating with the unpublished
result of computations at height 1023, were mainly dedicated to the GUE hypothesis empirical
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verifications. As observed by Odlyzko using different statistics, agreement is very good. Our
goal here is to compute some of the statistics observed by Odlyzko relative to the GUE
hypothesis, at height at each power of ten from 1013 to 1024. Our statistics, systematically
observed at consecutive power-of-ten heights, are also oriented to observe empirically how the
distribution of the spacing between zeros of the Zeta function converges to the asymptotic
expectation.

4.3 Statistics

4.3.1 Computation information

Computation was launched on spare time of several machines. Zeros were computed starting
roughly from the 10n-th zero for 13 ≤ n ≤ 24. An amount of roughly 2 × 109 zeros was
computed at each height. Physical memory requirement was less than 512 Mo, and in the
case of large height (for height 1023 and 1024), an amount of 12 Go of disk space was necessary.

Table below gives some indications of timing and the value of R used (see section 2.3). It
is to notice that due to the difficulty to have some long spare times on the different computers
used, we adapt values of R that is why it is not monotonous. Due also to different capacities
of the machines, the amount of used memory were not always identical. Timings are not
monotonous also but at least, the table is just here to fix idea about cost. Third and fourth
columns relates to offset index, so the value 10n should be added to have the absolute index
of first or last zero. First and last zeros are always chosen to be Gram points proved regular
with Turing’s method (see section 3.2).

Height Total timing
in hours

offset index of
first zero

offset index of
last zero

Value of R

1013 33.1 1 2× 109 16777216
1014 35.0 3 2× 109 16777216
1015 38.3 0 2× 109 − 1 8388608
1016 49.5 1 2× 109 − 1 16777216
1017 46.9 0 2× 109 16777216
1018 81.6 1 2× 109 − 1 33554432
1019 65.9 0 2× 109 + 1 33554432
1020 87.8 4 2× 109 − 1 33554432
1021 139.9 0 2× 109 − 1 33554432
1022 151.5 2 2× 109 − 1 134217728
1023 219.0 100 2× 109 − 1 268435456
1024 326.6 0 2× 109 + 47 268435456

Additional timing information relates to the efficiency of our implementation, using Odlyzko-
Schönhage algorithm, compared to the direct evaluation of the Zeta function using Riemann-
Siegel formula (6). At height 1024 for example, two third of the total time was spent in the
multi-evaluation of F (t) (see section 2.3) and a single evaluation of Zeta using the direct
optimized evaluation of Riemann-Siegel formula (25) (we used it for verification) took 5%
of the total time. So globally, the time needed to compute all the 2 × 109 zeros at height
1024 in our implementation is approximately equal to 20 evaluations of Zeta using the direct
Riemann-Siegel formula. This proves the very high efficiency of the method.

4.3.2 Distribution of spacing between zeros

Statistics were done to observe numerically the agreement of asymptotic formulas (31) and (30).
A first step is to be able to derive an expression for the density probability function p(0, t).
In [20], Odlyzko made use of a technique from Mehta and des Cloizeaux [17], that requires
explicit computation of eigenvalues and eigenvectors of an integral operator on an infinite
dimension functions space, then a complicated expression with infinite products and sums
depending on these eigenvalues. As suggested by Odlyzko to the author, more modern and
easier techniques are available today and Craig A. Tracy kindly transmitted those to the
author (see [32]). The approach relies on the identity

p(0, s) =
d

ds2

[
exp

(∫ πs

0

σ(x)

x
dx

)]
(32)
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where σ satisfies the differential equation

(xσ′′)2 + 4(xσ′ − σ)(xσ′ − σ + (σ′)2) = 0

with the boundary condition σ(x) ∼ −x/π as x→ 0.
In our statistical study to check the validity of the GUE hypothesis, we observed the

agreement of the empirical data with formulas (31) and (30) on each interval [α, β), with
α = i/100 and β = (i+ 1)/100 for integer values of i, 0 ≤ i < 300. In figure 3, in addition to
the curve representing the density probability function p(0, t), points were plotted at abscissa
(i+ 1/2)/100 and coordinate

ci = 100
1

M
#{n : N + 1 ≤ n ≤ N +M, δn ∈ [i/100, (i+ 1)/100]},

for height N = 1013 and number of zeros M ' 2× 109. As we can see the agreement is very
good, whereas the graphic is done with the lowest height in our collection : human eye is
barely able to distinguish between the points and the curve. That is why it is interesting to
plot rather the density difference between empirical data and asymptotic conjectured behavior
(as Odlyzko did in [23] for example). This is the object of figure 4, and this time what is
plotted in coordinate is the difference

di = ci −
∫ (i+1)/100

i/100

p(0, t) dt.

To make it readable, the graphic restricts on some family of height N even if the corresponding

data were computed at all height. The values Ii =
∫ (i+1)/100

i/100
p(0, t) dt were computed from

formula (32) with Maple. It is convenient to notice that Ii can be computed as p(0, t) in (32)
but using one differentiation order only instead of two.

Even if oscillations in the empirical data appear because the sampling size of 2×109 zeros
is a bit insufficient, we clearly see a structure in figure 4. First, the form of the difference at
each height has a given form, and then, the way this difference decreases with the height can
be observed.

Another interesting data is the agreement with Montgomery pair correlation conjecture (31)
about normalized spacing between non-necessarily consecutive zeros. Here analogous graphics
have been done, first with the distribution itself in figure 5 at height 1013, then with difference
of the asymptotic conjectured distribution and empirical data in figure 6. Again for readabil-
ity in the graphic, we restricted to plot only data for a limited number of height. It is striking
to observe here a better regularity in the form of the distribution difference, which is a sort
of sinusoid put on a positive slope.

4.3.3 Violations of Rosser rule

The table below lists statistics obtained on violations of Rosser rule (VRR). As we should
expect, more and more violations of Rosser rule occurs when the height increases. Special
points are Gram points which are counted in a VRR, so equivalently, they are points that do
not lie in a regular Gram block.

Height VRR per mil-
lion zeros

Number of
types of VRR

Number of special
points

Average number of
points in VRR

1013 37.98 68 282468 3.719
1014 54.10 86 418346 3.866
1015 72.42 109 581126 4.012
1016 93.99 140 780549 4.152
1017 117.25 171 1004269 4.283
1018 142.30 196 1255321 4.411
1019 168.55 225 1529685 4.538
1020 197.28 270 1837645 4.657
1021 225.80 322 2156944 4.776
1022 256.53 348 2507825 4.888
1023 286.97 480 2868206 4.997
1024 319.73 473 3262812 5.102
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Figure 3: Probability density of the normalized spacing δn and the GUE prediction, at height
1013. A number of 2 × 109 zeros have been used to compute empirical density, represented as
small circles.

Figure 4: Difference of the probability density of the normalized spacing δn and the GUE predic-
tion, at different height (1014, 1016, 1018, 1020, 1022, 1024). At each height, 2 × 109 zeros have
been used to compute empirical density, and the corresponding points been joined with segment
for convenience.
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Figure 5: Probability density of the normalized spacing between non-necessarily consecutive zeros
and the GUE prediction, at height 1013. A number of 2 × 109 zeros have been used to compute
empirical density, represented as small circles.

Figure 6: Difference of the probability density of the normalized spacing between non-necessarily
consecutive zeros and the GUE prediction, at different height (1016, 1020, 1024). At each height,
2 × 109 zeros have been used to compute empirical density, and the corresponding points been
joined with segment for convenience.
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4.3.4 Behavior of S(t)

The S(t) function is defined in (2) and permits to count zeros with formula (3). It plays an
important role in the study of the zeros of the Zeta function, because it was observed that
special phenomenon about the zeta function on the critical line occurs when S(t) is large.
For example, Rosser rule holds when |S(t)| < 2 in some range, thus one needs to have larger
values of S(t) to find more rare behavior.

As already seen before, it is known unconditionally that

S(t) = O(log t).

Under the RH, we have the slightly better bound

S(t) = O

(
log t

log log t

)
.

However, it is thought that the real growth of rate of S(t) is smaller. First, it was proved that
unconditionally, the function S(t)/(2π2 log log t)1/2 is asymptotically normally distributed.
So in some sense, the “average” order of S(t) is (log log t)1/2. As for extreme values of S(t);
Montgomery has shown that under the RH, there is an infinite number of values of t tending to
infinity so that the order of S(t) is at least (log t/ log log t)1/2. Montgomery also conjectured
that this is also an upper bound for S(t). As described in section 4.3.6 with formula (33), the
GUE suggests that S(t) might get as large as (log t)1/2 which would contradict this conjecture.

As explained in [22, P. 28], one might expect that the average number of changes of sign
of S(t) per Gram interval is of order (log log t)−1/2. This is to be compared with the last
column of the table below, which was obtained thanks to the statistics on Gram blocks and
violations of Rosser rule.

As it is confirmed in heuristic data in the table below, the rate of growth of S(t) is very
small. Since exceptions to RH, if any, would probably occur for large values of S(t), we see
that one should be able to reach much larger height, not reachable with today’s techniques,
to find those.

Height Minimum
of S(t)

Maximum
of S(t)

Number of
zeros with
S(t) < −2.3

Number of
zeros with
S(t) > 2.3

Average number of
change of sign of S(t)
per Gram interval

1013 -2.4979 2.4775 208 237 1.5874
1014 -2.5657 2.5822 481 411 1.5758
1015 -2.7610 2.6318 785 760 1.5652
1016 -2.6565 2.6094 1246 1189 1.5555
1017 -2.6984 2.6961 1791 1812 1.5465
1018 -2.8703 2.7141 2598 2743 1.5382
1019 -2.9165 2.7553 3487 3467 1.5304
1020 -2.7902 2.7916 4661 4603 1.5232
1021 -2.7654 2.8220 5910 5777 1.5164
1022 -2.8169 2.9796 7322 7359 1.5100
1023 -2.8178 2.7989 8825 8898 1.5040
1024 -2.9076 2.8799 10602 10598 1.4983

4.3.5 Estimation of the zeros approximation precision

As already discussed in section 4.1, a certain proportion of zeros were recomputed in another
process with different parameters in the implementation and zeros computed twice were com-
pared. Table below list the proportion of twice computed zeros per height, mean value of
absolute value of difference and maximal difference.
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Height Proportion of zeros
computed twice

Mean difference for
zeros computed twice

Max difference for ze-
ros computed twice

1013 4.0% 5.90E-10 5.87E-07
1014 6.0% 6.23E-10 1.43E-06
1015 6.0% 7.81E-10 1.08E-06
1016 4.5% 5.32E-10 7.75E-07
1017 8.0% 5.85E-10 9.22E-07
1018 7.5% 6.59E-10 1.88E-06
1019 11.0% 5.15E-10 3.07E-06
1020 12.5% 3.93E-10 7.00E-07
1021 31.5% 5.64E-10 3.54E-06
1022 50.0% 1.15E-09 2.39E-06
1023 50.0% 1.34E-09 3.11E-06
1024 50.0% 2.68E-09 6.82E-06

4.3.6 Extreme gaps between zeros

The table below lists the minimum and maximal values of normalized spacing between zeros
δn and of δn + δn+1, and compares this with what is expected under the GUE hypothesis (see
section 4.2). It can be proved that p(0, t) have the following Taylor expansion around 0

p(0, u) =
π2

3
u2 − 2

π4

45
u4 + · · ·

so in particular, for small delta

Prob(δn < δ) =

∫ δ

0

p(0, u) du ∼ π2

9
δ3

so that the probability that the smallest δn are less than δ for M consecutive values of δn is
about

1−
(

1− π2

9
δ3
)M

' 1− exp

(
−π

2

9
δ3M

)
.

This was the value used in the sixth column of the table. The result can be also obtained for
the δn + δn+1

Prob(δn + δn+1 < δ) ∼ π6

32400
δ8,

from which we deduce the value of the last column.

Height Mini δn Maxi δn Mini
δn +δn+1

Maxi
δn +δn+1

Prob min
δn in GUE

Prob min δn+
δn+1 in GUE

1013 0.0005330 4.127 0.1097 5.232 0.28 0.71
1014 0.0009764 4.236 0.1213 5.349 0.87 0.94
1015 0.0005171 4.154 0.1003 5.434 0.26 0.46
1016 0.0005202 4.202 0.1029 5.433 0.27 0.53
1017 0.0006583 4.183 0.0966 5.395 0.47 0.36
1018 0.0004390 4.194 0.1080 5.511 0.17 0.67
1019 0.0004969 4.200 0.0874 5.341 0.24 0.18
1020 0.0004351 4.268 0.1067 5.717 0.17 0.63
1021 0.0004934 4.316 0.1019 5.421 0.23 0.50
1022 0.0008161 4.347 0.1060 5.332 0.70 0.61
1023 0.0004249 4.304 0.1112 5.478 0.15 0.75
1024 0.0002799 4.158 0.0877 5.526 0.05 0.19

For very large spacing in the GUE, as reported by Odlyzko in [22], des Cloizeaux and
Mehta [5] have proved that

log p(0, t) ∼ −π2t2/8 (t→∞),

which suggests that

max
N+1≤n≤N+M

δn ∼
(8 logM)1/2

π
. (33)
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This would imply that S(t) would get occasionally as large as (log t)1/2, which is in contra-
diction with Montgomery’s conjecture about largest values of S(t), discussed in section 4.3.4.

4.3.7 Moments of spacings

The table below list statistical data about moments of the spacing δn − 1 at different height,
that is mean value of

Mk = (δn − 1)k,

together with the GUE expectations.

Height M2 M3 M4 M5 M6 M7 M8 M9

1013 0.17608 0.03512 0.09608 0.05933 0.10107 0.1095 0.1719 0.2471
1014 0.17657 0.03540 0.09663 0.05990 0.10199 0.1108 0.1741 0.2510
1015 0.17697 0.03565 0.09710 0.06040 0.10277 0.1119 0.1759 0.2539
1016 0.17732 0.03586 0.09750 0.06084 0.10347 0.1129 0.1776 0.2567
1017 0.17760 0.03605 0.09785 0.06123 0.10407 0.1137 0.1789 0.2590
1018 0.17784 0.03621 0.09816 0.06157 0.10462 0.1145 0.1803 0.2613
1019 0.17805 0.03636 0.09843 0.06189 0.10511 0.1152 0.1814 0.2631
1020 0.17824 0.03649 0.09867 0.06215 0.10553 0.1158 0.1824 0.2649
1021 0.17839 0.03661 0.09888 0.06242 0.10595 0.1165 0.1836 0.2668
1022 0.17853 0.03671 0.09906 0.06262 0.10627 0.1169 0.1842 0.2678
1023 0.17864 0.03680 0.09922 0.06282 0.10658 0.1174 0.1850 0.2692
1024 0.17875 0.03688 0.09937 0.06301 0.10689 0.1179 0.1859 0.2708
GUE 0.17999 0.03796 0.10130 0.06552 0.11096 0.1243 0.1969 0.2902

In the next table we find statistical data about moments of the spacing δn + δn+1 − 2 at
different height, that is mean value of

Nk = (δn + δn+1 − 2)k,

together with the GUE expectations.

Height N2 N3 N4 N5 N6 N7 N8 N9

1013 0.23717 0.02671 0.16887 0.06252 0.2073 0.1530 0.3764 0.4304
1014 0.23846 0.02678 0.17045 0.06301 0.2099 0.1550 0.3827 0.4388
1015 0.23956 0.02688 0.17181 0.06349 0.2122 0.1568 0.3880 0.4458
1016 0.24050 0.02700 0.17299 0.06396 0.2142 0.1585 0.3927 0.4523
1017 0.24132 0.02713 0.17404 0.06446 0.2159 0.1601 0.3970 0.4583
1018 0.24202 0.02726 0.17494 0.06488 0.2175 0.1614 0.4005 0.4630
1019 0.24264 0.02740 0.17574 0.06530 0.2188 0.1627 0.4036 0.4672
1020 0.24319 0.02753 0.17645 0.06569 0.2201 0.1639 0.4065 0.4713
1021 0.24366 0.02766 0.17709 0.06609 0.2212 0.1651 0.4092 0.4753
1022 0.24409 0.02778 0.17765 0.06643 0.2222 0.1660 0.4114 0.4780
1023 0.24447 0.02790 0.17819 0.06679 0.2232 0.1671 0.4140 0.4821
1024 0.24480 0.02801 0.17863 0.06709 0.2240 0.1679 0.4158 0.4846
GUE 0.249 0.03 0.185 0.073 0.237 0.185 0.451 0.544

The last table below is about mean value of log δn, 1/δn and 1/δ2n.

Height log δn 1/δn 1/δ2n
1013 -0.101540 1.27050 2.52688
1014 -0.101798 1.27124 2.53173
1015 -0.102009 1.27184 2.54068
1016 -0.102188 1.27235 2.54068
1017 -0.102329 1.27272 2.54049
1018 -0.102453 1.27308 2.54540
1019 -0.102558 1.27338 2.54906
1020 -0.102650 1.27363 2.54996
1021 -0.102721 1.27382 2.54990
1022 -0.102789 1.27401 2.54783
1023 -0.102843 1.27415 2.55166
1024 -0.102891 1.27427 2.55728
GUE -0.1035 1.2758 2.5633
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A Appendix : Graphics of Z(t) in particular zones

The following figures show the function Z(t) in some particular zones. Vertical doted lines
correspond to Gram points.
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Figure 7: The function Z(t) around the first Gram interval that contains 5 roots. The point G is
the Gram point of index 3, 680, 295, 786, 520.

Figure 8: A zoom of previous figure focused on the Gram interval that contains 5 roots. The point
G is the Gram point of index 3, 680, 295, 786, 520.

Figure 9: The function Z(t) around its maximal value encountered on the 1013 zero, at Gram
point of index 9, 725, 646, 131, 432.
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