References

- [1]
- M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, Dover, New York, (1964)
- [2]
- J.C. Adams, On the value of Euler's constant, Proc.
Roy. Soc. London, (1878), vol. 27, pp. 88-94
- [3]
- J.C. Adams, On the calculation of Bernoulli's
numbers up to B62 by means of Staudt's theorem, Rep.
Brit. Ass., (1877)
- [4]
- A.C. Aitken, On Bernoulli's numerical solution of
algebraic equations, Proc. Roy. Soc. Edinburgh, (1926), vol. 46, pp. 289-305
- [5]
- Al-Kashi, Treatise on the Circumference of the Circle, (1424)
- [6]
- G.E. Andrews, R. Askey and R. Roy, Special
functions, Cambridge University Press, Cambridge, (1999)
- [7]
- Le Petit Archimède, no. hors série, Le
nombre p, (1980)
- [8]
- J. Arndt and C. Haenel, p- Unleashed,
Springer, (2001)
- [9]
- E. Artin, The Gamma Function, New York, Holt,
Rinehart and Winston, (1964)
- [10]
- D.H. Bailey, Numerical Results on the
Transcendence of Constants Involving p, e, and Euler's Constant, Mathematics of Computation, (1988), vol. 50, pp. 275-281
- [11]
- D.H. Bailey, The Computation of p to
29,360,000 Decimal Digits Using Borweins' Quartically Convergent Algorithm,
Mathematics of Computation, (1988), vol. 50, pp. 283-296
- [12]
- D.H. Bailey, J.M. Borwein, P.B. Borwein and S. Plouffe,
The Quest for Pi, Mathematical Intelligencer, (1997), vol. 19, no. 1,
pp. 50-57
- [13]
- D.H. Bailey, P.B. Borwein and S. Plouffe, On the
Rapid Computation of Various Polylogarithmic Constants, Mathematics of
Computation, (1997), vol. 66, pp. 903-913
- [14]
- A. Baker, A Transcendental Number Theory, Cambridge
University Press, London, (1975)
- [15]
- J.P. Ballantine, The Best (?) Formula for
Computing p to a Thousand Places, The American Mathematical
Monthly, (1939), vol. 46, pp. 499-501
- [16]
- E.W. Barnes, The theory of the gamma function,
Messenger Math. (2), (1900), vol. 29, pp. 64-128
- [17]
- E.W. Barnes, On the expression of Euler's constant
as a definite integral, Messenger, (1903), vol. 33, pp. 59-61
- [18]
- P. Beckmann, A History of p, St. Martin's
press, New York, (1971)
- [19]
- L. Berggren, J. Borwein and P. Borwein, Pi : A
Source Book, Springer, (1997)
- [20]
- F. Beukers, A note on the irrationality of z(3), Bull. London Math. Soc. 11, (1979), pp. 268-272
- [21]
- W.A. Beyer and M.S. Waterman, Error analysis of a
computation of Euler's constant, Math. Comp, (1974), vol. 28, pp. 599-604
- [22]
- W.A. Beyer and M.S. Waterman, Decimals and partial
quotients of Euler's constant and ln(2), Math. Comp, (1974), vol. 28, p. 667
- [23]
- J.P.M. Binet, Journal école polyt., (1839), vol. 16, p.
131
- [24]
- R.H. Birch, An Algorithm for the Construction of
Arctangent Relations, Journal of the London Math. Soc., (1946), vol. 21,
pp. 173-174
- [25]
- D. Blatner, The Joy of Pi, Walker & Co., (1997)
- [26]
- H. Bohr and I. Mollerup, Loerbog I matematisk Analyse, Kopenhagen, (1922), vol. 3
- [27]
- R. Bombelli, L'Algebra, parte maggiore
dell'aritmetica, divisa in tre libri, Venice, (1572)
- [28]
- Boorman, (On the value of e), The Mathematical
Magazine, (1884), vol. 1, p. 204
- [29]
- G. Boros and V.H. Moll, Irresistible Integrals,
Symbolics, Analysis and Experiments in the Evaluation of Integrals,
Cambridge University Press, (2004)
- [30]
- J.M. Borwein and P.B. Borwein, The
Arithmetic-Geometric Mean and Fast Computation of Elementary Functions, SIAM review, (1984), vol. 26, pp. 351-366
- [31]
- J.M. Borwein and P.B. Borwein, Pi and the AGM - A study
in Analytic Number Theory and Computational Complexity, A
Wiley-Interscience Publication, New York, (1987)
- [32]
- J.M. Borwein and P.B. Borwein, More Ramanujan-type
series for 1/p, Ramanujan Revisited, Academic Press, Boston, (1988),
pp. 359-374
- [33]
- J.M. Borwein and P.B. Borwein, Ramanujan and Pi,
Scientific American, (1988), pp. 112-117
- [34]
- J.M. Borwein, P.B. Borwein and D.H. Bailey, Ramanujan, Modular Equations, and Approximations to Pi or How to Compute One
Billion Digits of Pi, The American Mathematical Monthly, (1989), vol. 96,
pp. 201-219
- [35]
- J.M. Borwein and I.J. Zucker, Elliptic
integral evaluation of the Gamma function at rational values of small
denominator, IMA J. of Numer Analysis, (1992), vol. 12, pp. 519-526
- [36]
- P.B. Borwein, An efficient algorithm for the
Riemann Zeta function, (1995)
- [37]
- R.P. Brent, Irregularities in the Distribution of
Primes and Twin Primes, Math. of Comp., (1975), vol. 29, pp. 43-56
- [38]
- R.P. Brent, The Complexity of Multiple-Precision
Arithmetic, Complexity of Computational Problem Solving, R. S. Andressen
and R. P. Brent, Eds, Univ. of Queensland Press, Brisbane, (1976)
- [39]
- R.P. Brent, Fast multiple-Precision evaluation of
elementary functions, J. Assoc. Comput. Mach., (1976), vol. 23, pp. 242-251
- [40]
- R.P. Brent, Computation of the regular continued
fraction for Euler's constant, Math. Comp., (1977), vol. 31, pp. 771-777
- [41]
- R.P. Brent and E.M. McMillan, Some New Algorithms
for High-Precision Computation of Euler's constant, Math. Comput., (1980),
vol. 34, pp. 305-331
- [42]
- C. Brézinski, Algorithmes
d'accélération de la convergence, Etude numérique, Edition
Technip, Paris, (1978)
- [43]
- H. Briggs, Arithmetica logarithmica sive
logarithmorum Chiliades Triginta, Londres, (1624)
- [44]
- E.M. Bruins, On the history of logarithms:
Bürgi, Napier, Briggs, de Decker, Vlacq, Huygens, Janus 67, (1980),
vol. 4, pp. 241-260
- [45]
- V. Brun, La série
1/5+1/7+1/11+1/13+1/17+1/19+1/29+1/31+..., où les dénominateurs sont
''nombres premiers jumeaux'' est convergente ou finie, Bull. Sci. Math.,
(1919), vol. 43, pp. 124-128
- [46]
- J. Bürgi, Arithmetische und geometrische Progress
Tabulen, sambt gründlichem unterricht wie solche nützlich in
allerley Rechnungen zugerbrauchen und verstanden werden sol, Prague, (1620)
- [47]
- W. Burnside, On rational approximations to logx , Messenger, (1917), vol. 47, pp. 79-80
- [48]
- F. Cajori, A History of Mathematical notations,
Dover, (republication 1993, original 1928-1929)
- [49]
- D. Castellanos, The Ubiquitous Pi. Part I.,
Math. Mag., (1988), vol. 61, pp. 67-98
- [50]
- L. van Ceulen, Van de Cirkel, daarin geleert wird te
finden de naeste proportie des Cirkels diameter tegen synen Omloop,
(1596,1616), Delft
- [51]
- D.G. Champernowne, The construction of decimals
normal in the scale of ten, J. Lond. Math. Soc. 8, (1933)
- [52]
- D.V. Chudnovsky and G.V. Chudnovsky, Approximations and complex multiplication according to Ramanujan, in Ramanujan Revisited, Academic Press Inc., Boston, (1988), pp. 375-396 &
pp. 468-472
- [53]
- D.V. Chudnovsky and G.V. Chudnovsky, The
Computation of Classical Constants, Proc. Nat. Acad. Sci. USA, (1989), vol.
86, pp. 8178-8182
- [54]
- T. Clausen, Theorem, Astron. Nach., (1840), vol.
17, pp. 351-352
- [55]
- C.W. Clenshaw and A.R. Curtis, A method for
numerical integration on an automatic computer, Num. Math., (1960), vol. 2,
pp. 197-205
- [56]
- H. Cohen, F. Rodriguez Villegas and D. Zagier, Convergence acceleration of alternating series, Bonn, (1991)
- [57]
- H. Cohen, High precision computation of
Hardy-Littlewood constants, preprint, (1991)
- [58]
- H. Cohen, A Course in Computational Algebraic Number
Theory, Springer-Verlag, (1995)
- [59]
- J.L. Coolidge, The number e, Amer. Math. Monthly,
(1950), vol. 57, pp. 591-602
- [60]
- A. Cox, The Arithmetic-Geometric Mean of Gauss,
L'enseignement Mathématique, (1984), vol. 30, pp. 275-330
- [61]
- R. Crandall and C. Pomerance, Prime Numbers, A
Computational Perspective, Springer, (2005)
- [62]
- Z. Dahse, Der Kreis-Umfang für den Durchmesser 1
auf 200 Decimalstellen berechnet, Journal für die reine und angewandte
Mathematik, (1844), vol. 27, p. 198
- [63]
- J.P. Delahaye, Le fascinant nombre p,
Bibliothèque Pour la Science, Belin, (1997)
- [64]
- J.P. Delahaye, Merveilleux nombres premiers,
Bibliothèque Pour la Science, Belin, (2000)
- [65]
- M. Deléglise and J. Rivat, Computing pi(x):
the Meissel, Lehmer, Lagarias, Miller, Odlyzko method, Math. Comp., (1996),
vol. 65, pp. 235-245
- [66]
- W. Dunham, Euler The Master of Us All, The
Mathematical Association of America, (1999)
- [67]
- H. Engels, Quadrature of the Circle in Ancient Egypt, Historia Mathematica, (1977), vol. 4, pp. 137-140
- [68]
- L. Euler, Inventio summae cuiusque seriei ex dato
termino generali, St Petersbourg, (1736)
- [69]
- L. Euler, Introduction à l'analyse
infinitésimale (french traduction by Labey), Barrois, ainé,
Librairie, (original 1748, traduction 1796), vol. 1
- [70]
- P. Eymard and J. P. Lafon, Autour du nombre p,
Paris, Hermann, (1999)
- [71]
- D. Ferguson, Evaluation of p. Are
Shanks' Figures Correct ?, Mathematical Gazette, (1946), vol. 30, pp. 89-90
- [72]
- D. Ferguson, Value of p, Nature, (1946),
vol. 17, p. 342
- [73]
- S. Finch, Favorite mathematical constants, http://pauillac.inria.fr/algo/bsolve/constant/constant.html, (1995)
- [74]
- S. Finch, Mathematical Constants, Encyclopedia of
Mathematics and its Applications, Cambridge University Press, (2003)
- [75]
- P. Flajolet and I. Vardi, Zeta Function Expansions
of Classical Constants, (1996)
- [76]
- F. Franklin, On an expression for Euler's constant, J. Hopkins circ., (1883), vol. 2, p. 143
- [77]
- E. Frisby, On the calculation of p, Messenger
of Mathematics, (1872), vol. 2, p. 114
- [78]
- C.E. Fröberg, On the sum of inverses of primes
and twin primes, Nordisk Tidskr. Informationsbehandling (BIT), (1961), vol.
1, pp. 15-20
- [79]
- C.F. Gauss, Werke, Göttingen, (1866-1933), vol. 3
- [80]
- F. Genuys, Dix milles décimales de p,
Chiffres, (1958), vol. 1, pp. 17-22
- [81]
- I. Gerst, Some Series for Euler's Constant, Amer.
Math. Monthly, (1969), vol. 76, pp. 273-275
- [82]
- N.M. Gibbins, A close upper bound for Euler's
constant, Math. Gazette, (1930), vol. 15, pp. 113-114
- [83]
- G.A. Gibson, Napier Tercentenary Celebration:
Handbook of the Exhibition, Royal Society of Edinburgh, (1914)
- [84]
- J.W.L. Glaisher, History of Euler's constant,
Messenger of Math., (1872), vol. 1, pp. 25-30
- [85]
- J.W.L. Glaisher, An enumeration of prime-pairs, Messenger of Mathematics, (1878), vol. 8, pp. 28-33
- [86]
- J.W.L. Glaisher, Note on a relation
connecting constants analogous to Euler's constant, Messenger, (1894), vol.
24, pp. 24-27
- [87]
- J.W.L. Glaisher, Methods of increasing the
convergence of certain series of reciprocals, Quart. J., (1902), vol. 34,
pp. 252-347
- [88]
- M. Godefroy, La fonction Gamma ; Théorie,
Histoire, Bibliographie, Gauthier-Villars, Paris, (1901)
- [89]
- X. Gourdon and P. Sebah, Numbers, Constants and
Computation, http://numbers.computation.free.fr/Constants/constants.html, (1999)
- [90]
- R.L. Graham, D.E. Knuth and O. Patashnik, Concrete
Mathematics, Addison-Wesley, (1994)
- [91]
- J. Guilloud and M. Bouyer, 1 000 000 de
décimales de p, Commissariat à l'Energie Atomique, (1974)
- [92]
- E. Hairer and G. Wanner, L'analyse au fil de
l'histoire, Bibliothèque Scopos, Springer, (2000)
- [93]
- G.H. Hardy, Ramanujan, Cambridge Univ. Press,
London, (1940)
- [94]
- G.H. Hardy and E.M. Wright, An Introduction to the
Theory of Numbers, Oxford Science Publications, (1979)
- [95]
- M. Hata, Rational approximations to p and
some other numbers, Acta arithmetica, (1993), vol. 63, pp. 335-349
- [96]
- J. Havil, Gamma. Exploring Euler's Constant,
Princeton University Press, (2003)
- [97]
- T.L. Heath, The Works of Archimedes, Cambridge
University Press, (1897)
- [98]
- C. Hermite, Sur la fonction exponentielle, C. R.
Académie des Sciences, (1873), vol. 77, pp. 18-24, 74-79, 226-233,
285-293
- [99]
- D. Hilbert, Ueber die Transcendenz der Zahlen e und p, Mathematische Annalen, (1893), vol. 43, pp. 216-219
- [100]
- G. Horton, A note on the calculation of Euler's
constant, American Mathematical Monthly, (1916), vol. 23, p. 73
- [101]
- A.S. Householder, The Numerical Treatment of a
Single Nonlinear Equation, McGraw-Hill, New York, (1970)
- [102]
- D. Huylebrouck, Van Ceulen's Tombstone, The
Mathematical Intelligencer, (1995), vol. 4, pp. 60-61
- [103]
- C.L. Hwang, More Machin-Type Identities, Math. Gaz.,
(1997), pp. 120-121
- [104]
- W. Jones, Synopsis palmiorum matheseos, London,
(1706), p. 263
- [105]
- W.J. Kaczor and M.T. Nowak, Problems in mathematical
analysis I: Real numbers, sequences and series, AMS, (2000)
- [106]
- Y. Kanada, Y. Tamura, S. Yoshino and Y. Ushiro, Calculation of p to 10,013,395 decimal places based on the
Gauss-Legendre Algorithm and Gauss Arctangent relation, Computer Centre,
University of Tokyo, (1983), Tech. Report 84-01
- [107]
- Y. Kanada, Vectorization of Multiple-Precision
Arithmetic Program and 201,326,000 Decimal Digits of p Calculation, Supercomputing, (1988), vol. 2, Science and Applications, pp.
117-128
- [108]
- A. Karatsuba and Y. Ofman, Multiplication of
multidigit numbers on automata (Russian), Dokl. Akad. Nauk SSSR, (1962),
vol. 145, pp. 293-294
- [109]
- E.A. Karatsuba, Fast evaluation of
transcendental functions, Problems of Information Transmission, (1991),
vol. 27, pp. 339-360
- [110]
- E.A. Karatsuba, Fast Calculation of the Riemann
Zeta function z(s) for Integer Values of the Arguments,
Problems of Information Transmission 31, (1995), pp. 353-362
- [111]
- A.H. Karp and P. Markstein, High-Precision Division
and Square Root, Transactions on Mathematical Software, (1997), vol. 23,
number 4, pp. 561-589
- [112]
- V.J. Katz, A History of Mathematics-An Introduction,
Addison-Wesley, (1998)
- [113]
- B.C. Kellner, The Bernoulli Number Page, World
Wide Web site at the address: http://www.Bernoulli.org, (2002)
- [114]
- J.C. Kluyver, De constante van Euler en de
natuurlijhe getallen, Amst. Ak., (1924), vol. 33, pp. 149-151
- [115]
- M.D. Kruskal, American Mathematical Monthly, (1954), vol.
61, pp. 392-397
- [116]
- K. Knopp, Theory and application of infinite series,
Blackie & Son, London, (1951)
- [117]
- C.G. Knott (ed.), Napier Tercentenary Memorial Volume, London, (1915)
- [118]
- Brothers, H.J. and J.A. Knox, New closed-form
approximations to the logarithmic constant e, Math. Intelligencer, (1998)
- [119]
- J.A. Knox and H.J. Brothers, Novel series-based
approximations to e, College Math. J., (1998)
- [120]
- D.E. Knuth, Euler's constant to 1271 places, Math.
Comput., (1962), vol. 16, pp. 275-281
- [121]
- D.E. Knuth, The Art of Computer Programming, Vol.
II, Seminumerical Algorithms, Addison Wesley, (1998)
- [122]
- J.C. Lagarias, V.S. Miller and A.M. Odlyzko, Computing
pi(x): the Meissel-Lehmer method, Math. Comp., (1985), vol. 44, pp. 537-560
- [123]
- F. de Lagny, Mémoire sur la quadrature du cercle
et sur la mesure de tout arc, tout secteur et tout segment donné,
Histoire de l'Académie Royale des sciences, Paris, (1719)
- [124]
- L.Y. Lam and T.S. Ang, Circle Measurements in Ancient
China, Historia Mathematica, (1986), vol. 13, pp. 325-340
- [125]
- J.H. Lambert, Mémoire sur quelques
propriétés remarquables des quantités transcendantes circulaires
et logarithmiques, Histoire de l'Académie Royale des Sciences et des
Belles-Lettres der Berlin, (1761), pp. 265-276
- [126]
- C. Lanczos, Applied Analysis, Dover Publications,
New York, (1988, first edition 1956)
- [127]
- A.M. Legendre, Eléments de géométrie,
Didot, Paris, (1794)
- [128]
- A.M. Legendre, Mémoires de la classe des
sciences mathématiques et physiques de l'Institut de France, Paris,
(1809), pp. 477, 485, 490
- [129]
- A.M. Legendre, Traité des Fonctions
Elliptiques, Paris, (1825-1828), vol. 2, p. 434
- [130]
- D.H. Lehmer, On Arctangent Relations for p,
The American Mathematical Monthly, (1938), pp. 657-664
- [131]
- A.K. Lenstra, H.W. Lenstra, Jr. and L. Lovàsz, Factoring Polynomials with Rational Coefficients, Math. Ann. 261, (1982)
- [132]
- W.J. LeVeque, Fundamentals of Number Theory, New
York, Dover Publications, (1996, first edition 1977)
- [133]
- R. Liénard, Tables fondamentales à 50
décimales des sommes Sn,un,ån, Paris, Centre de Docum.
Univ., (1948)
- [134]
- W. Ligowski, Grenzen für die Basis der
natürlichen Logarithmen, Grunert Arch., (1875), vol. 57, pp. 220-221
- [135]
- F. Lindemann, Ueber die Zahl p,
Mathematische Annalen, (1882), vol. 20, pp. 213-225
- [136]
- F. Le Lionnais, Les nombres remarquables,
Paris, Hermann, (1983)
- [137]
- J. Liouville, Sur des classes trés
étendues de quantités dont la valeur n'est ni rationnelle ni
même réductible à des irrationnelles algébriques, Comptes
rendus, (1844), vol. 18, pp. 883-885, pp. 910-911
- [138]
- E. Maor, To Infinity and Beyond: A Cultural History
of the Infinite, Princeton University Press, (1991)
- [139]
- E. Maor, e: The Story of a Number, Princeton
University Press, (1994)
- [140]
- C. Maclaurin, A Treatise of fluxions, Edinburgh,
(1742)
- [141]
- N. Mercator, Logarithmotechnia: sive methodus
construendi logarithmos nova, accurata & facilis, London, (1668)
- [142]
- C.W. Merrifield, The sums of the series of
reciprocals of the prime numbers and of their powers, Proc. Roy. Soc.
London, (1881), vol. 33, pp. 4-10
- [143]
- F. Mertens, Journal für Math., (1874), vol. 78, pp.
46-62
- [144]
- P. Moree, Approximation of singular series and
automata, Manuscripta Math., (2000), vol. 101, pp. 385-399
- [145]
- J. Muir, Of Men and Numbers, Dover Publications, New
York, (1996, first edition 1961)
- [146]
- J. Napier, Mirifici logarithmorum canonis descriptio, Edinburgh, (1614)
- [147]
- J. Napier, Mirifici logarithmorum canonis
constructio, Edinburgh, (1619)
- [148]
- O. Neugebauer, The exact sciences in antiquity,
Dover Publications, New York, (1969, first edition 1957)
- [149]
- M. Newman, D. Shanks, On a Sequence Arising in
Series for p, Math. of Comp., (1984), vol. 42, pp. 199-217
- [150]
- I. Newton, Methodus fluxionum et serierum infinitarum, (1664-1671)
- [151]
- T. Nicely, Enumeration to 1014 of the
Twin Primes and Brun's Constant, Virginia J. Sci., (1996), vol. 46, pp.
195-204
- [152]
- S.C. Nicholson and J. Jeenel, Some comments on a
NORC computation of p, MTAC, (1955), vol. 9, pp. 162-164
- [153]
- N. Nielsen, Om log(2) og 1/12-1/32+1/52-1/72+..., Nyt Tidss. for Math., (1894), pp. 22-25
- [154]
- N. Nielsen, Handbuch der Theorie der Gammafunktion, Leipzig, (1906)
- [155]
- I. Niven, A simple Proof that p is
irrational, Bull. Amer. Math. Soc., (1947), vol. 53, p. 509
- [156]
- J.M. Ortega and W.C. Rheinboldt, Iterative Solution
of Nonlinear Equations in Several Variables, New York, Academic Press,
(1970)
- [157]
- H. Padé, Sur l'irrationalité des nombres e et p, Darboux Bull., (1888), vol. 12, pp. 144-148
- [158]
- G.M. Phillips, Archimedes the Numerical Analyst, The
American Mathematical Monthly, (1981), vol. 88, pp. 165-169
- [159]
- A. van der Poorten, A Proof that Euler Missed...,
Apéry's Proof of the Irrationality of z(3), The Mathematical
Intelligencer, (1979), vol. 1, pp. 195-203
- [160]
- R. Preston, The Mountains of Pi, The New Yorker,
March 2, (1992), pp. 36-67
- []
- M. Prévost, A Family of Criteria for
Irrationality of Euler's Constant, preprint, (2005)
- [162]
- S. Rabinowitz, A Spigot-Algorithm for p,
Abstract of the American Mathematical Society, (1991), vol. 12, p. 30
- [163]
- R. Rado, A Note on the Bernoullian Numbers, J. London
Math. Soc., (1934), vol. 9, pp. 88-90
- [164]
- C.T. Rajagopal and T. V. Vedamurti Aiyar, A Hindu
approximation to pi, Scripta Math., (1952), vol. 18, pp. 25-30
- [165]
- S. Ramanujan, Modular equations and
approximations to p, Quart. J. Pure Appl. Math., (1914), vol. 45, pp.
350-372
- [166]
- S. Ramanujan, A series for Euler's constant g, Messenger, (1916), vol. 46, pp. 73-80
- [167]
- S. Ramanujan, Collected Papers, Chelsea,
New York, (1962)
- [168]
- J. Raphson, Analysis Aequationum universalis,
London, (1690)
- [169]
- G.W. Reitwiesner, An ENIAC Determination of p and e to more than 2000 Decimal Places, Mathematical Tables and other Aids to Computation, (1950), vol. 4, pp. 11-15
- [170]
- P. Ribenboim, The new Book of Prime Number Records, Springer, (1996)
- [171]
- P. Ribenboim, The little Book of bigger
Primes, Springer, (2004)
- [172]
- L.W. Richardson, The deferred Approach to the
Limit, Philosophical Transactions of the Royal Society of London, (1927),
serie A, vol. 226
- [173]
- T. Rivoal, La fonction Zeta de Riemann prend une
infinité de valeurs irrationnelles aux entiers impairs, C. R. Acad.
Sci., (2000), vol. 331, pp. 267-270
- [174]
- W. Romberg, Vereinfachte numerische Integration,
Det Kong. Norkse Videnskabernes Selskabs Forhandlinger, Trondheim, (1955),
vol. 28, n°7, pp. 30-36
- [175]
- W. Rutherford, Computation of the Ratio of the
Diameter of a Circle to its Circumference to 208 places of Figures,
Philosophical Transactions of the Royal Society of London, (1841), vol. 131,
pp. 281-283
- [176]
- L. Saalschütz, Vorlesungen über die
Bernoullischen Zahlen, Berlin, Verlag von Julius Springer, (1893)
- [177]
- M. Saigey, Problèmes d'arithmétique et
exercices de calcul du second degré avec les solutions raisonnées,
Hachette, Paris, (1859)
- [178]
- E. Salamin, Computation of p Using
Arithmetic-Geometric Mean, Mathematics of Computation, (1976), vol. 30, pp.
565-570
- [179]
- A. Sale, The Calculation of e to many Significant
Digits, Computing Journal, (1968), vol. 11, pp. 229-230
- [180]
- H.C. Schepler, The Chronology of Pi, Mathematics
Magazine, (1950), vol. 23
- [181]
- A. Schönhage and V. Strassen, Schnelle
Multiplikation grosser Zahlen, Computing, (1971), vol. 7, pp. 281-292
- [182]
- P. Sebah, Machin like formulae for logarithm,
Unpublished, (1997)
- [183]
- L. Seidel, Ueber eine Darstellung des Kreisbogens,
des Logarithmus und des elliptischen Integrales erster Art durch unendliche
Producte, Borchardt J., (1871), vol. 73, pp. 273-291
- [184]
- W. Shanks, Contributions to Mathematics Comprising
Chiefly the Rectification of the Circle to 607 Places of Decimals, G. Bell,
London, (1853)
- [185]
- W. Shanks, (On Euler's constant), Proc. Roy. Soc.
London, (1869), vol. 18, p. 49
- [186]
- W. Shanks, Second paper on the numerical value of
Euler's constant and the summation of the harmonic series employed in
obtaining such value, Proc. Roy. Soc. London, (1871), vol. 19, pp. 29-34
- [187]
- W. Shanks, Second paper on the numerical values of e,loge2,loge3 and loge10, also on the
numerical value of M the modulus of the common system of
logarithms, all to 205 decimals, Proc. of London, (1871), vol. 19, pp. 27-29
- [188]
- W. Shanks, On the Extension of the Numerical Value
of p, Proceedings of the Royal Society of London, (1873), vol. 21, pp.
315-319
- [189]
- D. Shanks and J.W. Wrench, Jr., Calculation of p to 100,000 Decimals, Math. Comput., (1962), vol. 16, pp. 76-99
- [190]
- D. Shanks and J.W. Wrench, Jr., Calculation of e to 100,000 Decimals, Math. Comput., (1969), vol. 23, pp. 679-680
- [191]
- D. Shanks and J.W. Wrench, Jr., Brun's Constant, Math. Comput., (1974), vol. 28, pp. 293-299
- [192]
- D.E. Smith, A Source Book in Mathematics, Dover
Publications, New York, (1959, first edition 1929)
- [193]
- W. van Roijen Snell (Snellius), Cyclometricus,
Leiden, (1621)
- [194]
- J. Sondow, An antisymmetric formula for Euler's
constant, Mathematics Magazine, (1998), vol. 71, number 3, pp. 219-220
- [195]
- J. Sondow, Criteria for irrationality of Euler's
constant, Proc. Amer. Math. Soc., (2003), vol. 131, pp. 3335-3344
- [196]
- K.G.C. von Staudt, Beweis eines Lehrsatzes, die
Bernoullischen Zahlen betreffend, J. reine angew. Math., (1840), vol. 21,
pp. 372-374
- [197]
- T.J. Stieltjes, Tables des valeurs des sommes Sk=ån=1¥n-k,Acta Mathematica, (1887), vol. 10, pp.
299-302
- [198]
- C. Störmer, Sur l'application de la théorie
des nombres entiers complexes à la solution en nombres rationnels x1,x2,...,xn,c1,c2,...,cn,k de
l'équation c1arctg x1+c2 arctg x2+...+cn arctg xn=kp/4, Archiv for Mathematik og Naturvidenskab, (1896), vol. 19
- [199]
- C. Störmer, Solution complète en nombres
entiers de l'équation m.arctang[ 1/x]+n.arctang[ 1/y]=k[(p)/4], Bull. Soc. Math. France, (1899), vol. 27,
pp. 160-170
- [200]
- D.W. Sweeney, On the Computation of Euler's Constant, Mathematics of Computation, (1963), pp. 170-178
- [201]
- D. Takahasi and Y. Kanada, Calculation of Pi to
51.5 Billion Decimal Digits on Distributed Memory and Parallel Processors,
Transactions of Information Processing Society of Japan, (1998), vol. 39, n°7
- [202]
- Y. Tamura and Y. Kanada, Calculation of p to 4,194,293 Decimals Based on Gauss-Legendre Algorithm, Computer Center,
University of Tokyo, Technical Report-83-01
- [203]
- G. Tenenbaum and M. Mendès France, Les
nombres premiers, Collection que sais-je ?, Presses universitaires de
France, 1997
- [204]
- J. Todd, A Problem on Arc Tangent Relations, Amer.
Math. Monthly, (1949), vol. 56, pp. 517-528
- [205]
- J. Todd, The Lemniscate Constants, Communications
of the ACM, (1975), vol. 18, pp. 14-19
- [206]
- H.S. Uhler, Recalculation and extension of the
modulus and of the logarithms of 2, 3, 5, 7 and 17, Proc. Nat. Acad. Sci.,
(1940), vol. 26, pp. 205-212
- [207]
- G. Vacca, A New Series for the Eulerian Constant,
Quart. J. Pure Appl. Math, (1910), vol. 41, pp. 363-368
- [208]
- C. de la Vallée Poussin, Sur les valeurs
moyennes de certaines fonctions arithmétiques, Annales de la
société scientifique de Bruxelles, (1898), vol. 22, pp. 84-90
- [209]
- G. Vega, Thesaurus Logarithmorum Completus, Leipzig,
(1794)
- [210]
- F. Viète, Opera Mathematica (reprinted), Georg
Olms Verlag, Hildesheim, New York, (1970)
- [211]
- A. Vlacq, Arithmetica logarithmica, Gouda, (1628)
- [212]
- A. Volkov, Calculation of p in ancient
China : from Liu Hui to Zu Chongzhi, Historia Sci., vol. 4, (1994), pp.
139-157
- [213]
- S. Wagon, Is p Normal?, The
Mathematical Intelligencer, vol. 7, (1985), pp. 65-67
- [214]
- J. Wallis, Arithmetica infinitorum, sive nova
methodus inquirendi in curvilineorum quadratum, aliaque difficiliora
matheseos problemata, Oxford, (1655)
- [215]
- K. Weierstrass, Zu Lindemann's Abhandlung:
'Über die Ludolph'sche Zahl', Sitzungber. Königl. Preuss. Akad.
Wissensch. zu Berlin, (1885), vol. 2, pp. 1067-1086
- [216]
- E.W. Weisstein, CRC Concise Encyclopedia of
Mathematics, CRC Press, (1999)
- [217]
- J.W. Wrench Jr. and L.B. Smith, Values of the terms
of the Gregory series for arccot 5 and arccot 239 to 1150 and 1120 decimal
places, respectively, Mathematical Tables and other Aids to Computation,
(1950), vol. 4, pp. 160-161
- [218]
- J.W. Wrench Jr., A new calculation of Euler's
constant, MTAC, (1952), vol. 6, p. 255
- [219]
- J.W. Wrench Jr., The Evolution of Extended Decimal
Approximations to p, The Mathematics Teacher, (1960), vol. 53, pp.
644-650
- [220]
- J.W. Wrench Jr., Evaluation of Artin's constant
and the twin prime constant, Math. Comp., (1961), vol. 15, pp. 396-398
- [221]
- P. Wynn, On a device for computing the em(Sn) transformation, MTAC, (1956), vol. 10, pp. 91-96
- [222]
- G. Xiong, On a kind of the best estimates for the
Euler constant g, Acta Math. Sci. 16, (1996), vol. 4, pp. 458-468
- [223]
- R.M. Young, Euler's constant, Math. Gazette 75,
(1991), vol. 472, pp. 187-190