M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover, New York, (1964)

J.C. Adams, On the value of Euler's constant, Proc. Roy. Soc. London, (1878), vol. 27, pp. 88-94

J.C. Adams, On the calculation of Bernoulli's numbers up to B62 by means of Staudt's theorem, Rep. Brit. Ass., (1877)

A.C. Aitken, On Bernoulli's numerical solution of algebraic equations, Proc. Roy. Soc. Edinburgh, (1926), vol. 46, pp. 289-305

Al-Kashi, Treatise on the Circumference of the Circle, (1424)

G.E. Andrews, R. Askey and R. Roy, Special functions, Cambridge University Press, Cambridge, (1999)

Le Petit Archimède, no. hors série, Le nombre p, (1980)

J. Arndt and C. Haenel, p- Unleashed, Springer, (2001)

E. Artin, The Gamma Function, New York, Holt, Rinehart and Winston, (1964)

D.H. Bailey, Numerical Results on the Transcendence of Constants Involving p, e, and Euler's Constant, Mathematics of Computation, (1988), vol. 50, pp. 275-281

D.H. Bailey, The Computation of p to 29,360,000 Decimal Digits Using Borweins' Quartically Convergent Algorithm, Mathematics of Computation, (1988), vol. 50, pp. 283-296

D.H. Bailey, J.M. Borwein, P.B. Borwein and S. Plouffe, The Quest for Pi, Mathematical Intelligencer, (1997), vol. 19, no. 1, pp. 50-57

D.H. Bailey, P.B. Borwein and S. Plouffe, On the Rapid Computation of Various Polylogarithmic Constants, Mathematics of Computation, (1997), vol. 66, pp. 903-913

A. Baker, A Transcendental Number Theory, Cambridge University Press, London, (1975)

J.P. Ballantine, The Best (?) Formula for Computing p to a Thousand Places, The American Mathematical Monthly, (1939), vol. 46, pp. 499-501

E.W. Barnes, The theory of the gamma function, Messenger Math. (2), (1900), vol. 29, pp. 64-128

E.W. Barnes, On the expression of Euler's constant as a definite integral, Messenger, (1903), vol. 33, pp. 59-61

P. Beckmann, A History of p, St. Martin's press, New York, (1971)

L. Berggren, J. Borwein and P. Borwein, Pi : A Source Book, Springer, (1997)

F. Beukers, A note on the irrationality of z(3), Bull. London Math. Soc. 11, (1979), pp. 268-272

W.A. Beyer and M.S. Waterman, Error analysis of a computation of Euler's constant, Math. Comp, (1974), vol. 28, pp. 599-604

W.A. Beyer and M.S. Waterman, Decimals and partial quotients of Euler's constant and ln(2), Math. Comp, (1974), vol. 28, p. 667

J.P.M. Binet, Journal école polyt., (1839), vol. 16, p. 131

R.H. Birch, An Algorithm for the Construction of Arctangent Relations, Journal of the London Math. Soc., (1946), vol. 21, pp. 173-174

D. Blatner, The Joy of Pi, Walker & Co., (1997)

H. Bohr and I. Mollerup, Loerbog I matematisk Analyse, Kopenhagen, (1922), vol. 3

R. Bombelli, L'Algebra, parte maggiore dell'aritmetica, divisa in tre libri, Venice, (1572)

Boorman, (On the value of e), The Mathematical Magazine, (1884), vol. 1, p. 204

G. Boros and V.H. Moll, Irresistible Integrals, Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, (2004)

J.M. Borwein and P.B. Borwein, The Arithmetic-Geometric Mean and Fast Computation of Elementary Functions, SIAM review, (1984), vol. 26, pp. 351-366

J.M. Borwein and P.B. Borwein, Pi and the AGM - A study in Analytic Number Theory and Computational Complexity, A Wiley-Interscience Publication, New York, (1987)

J.M. Borwein and P.B. Borwein, More Ramanujan-type series for 1/p, Ramanujan Revisited, Academic Press, Boston, (1988), pp. 359-374

J.M. Borwein and P.B. Borwein, Ramanujan and Pi, Scientific American, (1988), pp. 112-117

J.M. Borwein, P.B. Borwein and D.H. Bailey, Ramanujan, Modular Equations, and Approximations to Pi or How to Compute One Billion Digits of Pi, The American Mathematical Monthly, (1989), vol. 96, pp. 201-219

J.M. Borwein and I.J. Zucker, Elliptic integral evaluation of the Gamma function at rational values of small denominator, IMA J. of Numer Analysis, (1992), vol. 12, pp. 519-526

P.B. Borwein, An efficient algorithm for the Riemann Zeta function, (1995)

R.P. Brent, Irregularities in the Distribution of Primes and Twin Primes, Math. of Comp., (1975), vol. 29, pp. 43-56

R.P. Brent, The Complexity of Multiple-Precision Arithmetic, Complexity of Computational Problem Solving, R. S. Andressen and R. P. Brent, Eds, Univ. of Queensland Press, Brisbane, (1976)

R.P. Brent, Fast multiple-Precision evaluation of elementary functions, J. Assoc. Comput. Mach., (1976), vol. 23, pp. 242-251

R.P. Brent, Computation of the regular continued fraction for Euler's constant, Math. Comp., (1977), vol. 31, pp. 771-777

R.P. Brent and E.M. McMillan, Some New Algorithms for High-Precision Computation of Euler's constant, Math. Comput., (1980), vol. 34, pp. 305-331

C. Brézinski, Algorithmes d'accélération de la convergence, Etude numérique, Edition Technip, Paris, (1978)

H. Briggs, Arithmetica logarithmica sive logarithmorum Chiliades Triginta, Londres, (1624)

E.M. Bruins, On the history of logarithms: Bürgi, Napier, Briggs, de Decker, Vlacq, Huygens, Janus 67, (1980), vol. 4, pp. 241-260

V. Brun, La série 1/5+1/7+1/11+1/13+1/17+1/19+1/29+1/31+..., où les dénominateurs sont ''nombres premiers jumeaux'' est convergente ou finie, Bull. Sci. Math., (1919), vol. 43, pp. 124-128

J. Bürgi, Arithmetische und geometrische Progress Tabulen, sambt gründlichem unterricht wie solche nützlich in allerley Rechnungen zugerbrauchen und verstanden werden sol, Prague, (1620)

W. Burnside, On rational approximations to logx , Messenger, (1917), vol. 47, pp. 79-80

F. Cajori, A History of Mathematical notations, Dover, (republication 1993, original 1928-1929)

D. Castellanos, The Ubiquitous Pi. Part I., Math. Mag., (1988), vol. 61, pp. 67-98

L. van Ceulen, Van de Cirkel, daarin geleert wird te finden de naeste proportie des Cirkels diameter tegen synen Omloop, (1596,1616), Delft

D.G. Champernowne, The construction of decimals normal in the scale of ten, J. Lond. Math. Soc. 8, (1933)

D.V. Chudnovsky and G.V. Chudnovsky, Approximations and complex multiplication according to Ramanujan, in Ramanujan Revisited, Academic Press Inc., Boston, (1988), pp. 375-396 & pp. 468-472

D.V. Chudnovsky and G.V. Chudnovsky, The Computation of Classical Constants, Proc. Nat. Acad. Sci. USA, (1989), vol. 86, pp. 8178-8182

T. Clausen, Theorem, Astron. Nach., (1840), vol. 17, pp. 351-352

C.W. Clenshaw and A.R. Curtis, A method for numerical integration on an automatic computer, Num. Math., (1960), vol. 2, pp. 197-205

H. Cohen, F. Rodriguez Villegas and D. Zagier, Convergence acceleration of alternating series, Bonn, (1991)

H. Cohen, High precision computation of Hardy-Littlewood constants, preprint, (1991)

H. Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, (1995)

J.L. Coolidge, The number e, Amer. Math. Monthly, (1950), vol. 57, pp. 591-602

A. Cox, The Arithmetic-Geometric Mean of Gauss, L'enseignement Mathématique, (1984), vol. 30, pp. 275-330

R. Crandall and C. Pomerance, Prime Numbers, A Computational Perspective, Springer, (2005)

Z. Dahse, Der Kreis-Umfang für den Durchmesser 1 auf 200 Decimalstellen berechnet, Journal für die reine und angewandte Mathematik, (1844), vol. 27, p. 198

J.P. Delahaye, Le fascinant nombre p, Bibliothèque Pour la Science, Belin, (1997)

J.P. Delahaye, Merveilleux nombres premiers, Bibliothèque Pour la Science, Belin, (2000)

M. Deléglise and J. Rivat, Computing pi(x): the Meissel, Lehmer, Lagarias, Miller, Odlyzko method, Math. Comp., (1996), vol. 65, pp. 235-245

W. Dunham, Euler The Master of Us All, The Mathematical Association of America, (1999)

H. Engels, Quadrature of the Circle in Ancient Egypt, Historia Mathematica, (1977), vol. 4, pp. 137-140

L. Euler, Inventio summae cuiusque seriei ex dato termino generali, St Petersbourg, (1736)

L. Euler, Introduction à l'analyse infinitésimale (french traduction by Labey), Barrois, ainé, Librairie, (original 1748, traduction 1796), vol. 1

P. Eymard and J. P. Lafon, Autour du nombre p, Paris, Hermann, (1999)

D. Ferguson, Evaluation of p. Are Shanks' Figures Correct ?, Mathematical Gazette, (1946), vol. 30, pp. 89-90

D. Ferguson, Value of p, Nature, (1946), vol. 17, p. 342

S. Finch, Favorite mathematical constants,, (1995)

S. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, Cambridge University Press, (2003)

P. Flajolet and I. Vardi, Zeta Function Expansions of Classical Constants, (1996)

F. Franklin, On an expression for Euler's constant, J. Hopkins circ., (1883), vol. 2, p. 143

E. Frisby, On the calculation of p, Messenger of Mathematics, (1872), vol. 2, p. 114

C.E. Fröberg, On the sum of inverses of primes and twin primes, Nordisk Tidskr. Informationsbehandling (BIT), (1961), vol. 1, pp. 15-20

C.F. Gauss, Werke, Göttingen, (1866-1933), vol. 3

F. Genuys, Dix milles décimales de p, Chiffres, (1958), vol. 1, pp. 17-22

I. Gerst, Some Series for Euler's Constant, Amer. Math. Monthly, (1969), vol. 76, pp. 273-275

N.M. Gibbins, A close upper bound for Euler's constant, Math. Gazette, (1930), vol. 15, pp. 113-114

G.A. Gibson, Napier Tercentenary Celebration: Handbook of the Exhibition, Royal Society of Edinburgh, (1914)

J.W.L. Glaisher, History of Euler's constant, Messenger of Math., (1872), vol. 1, pp. 25-30

J.W.L. Glaisher, An enumeration of prime-pairs, Messenger of Mathematics, (1878), vol. 8, pp. 28-33

J.W.L. Glaisher, Note on a relation connecting constants analogous to Euler's constant, Messenger, (1894), vol. 24, pp. 24-27

J.W.L. Glaisher, Methods of increasing the convergence of certain series of reciprocals, Quart. J., (1902), vol. 34, pp. 252-347

M. Godefroy, La fonction Gamma ; Théorie, Histoire, Bibliographie, Gauthier-Villars, Paris, (1901)

X. Gourdon and P. Sebah, Numbers, Constants and Computation,, (1999)

R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, (1994)

J. Guilloud and M. Bouyer, 1 000 000 de décimales de p, Commissariat à l'Energie Atomique, (1974)

E. Hairer and G. Wanner, L'analyse au fil de l'histoire, Bibliothèque Scopos, Springer, (2000)

G.H. Hardy, Ramanujan, Cambridge Univ. Press, London, (1940)

G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford Science Publications, (1979)

M. Hata, Rational approximations to p and some other numbers, Acta arithmetica, (1993), vol. 63, pp. 335-349

J. Havil, Gamma. Exploring Euler's Constant, Princeton University Press, (2003)

T.L. Heath, The Works of Archimedes, Cambridge University Press, (1897)

C. Hermite, Sur la fonction exponentielle, C. R. Académie des Sciences, (1873), vol. 77, pp. 18-24, 74-79, 226-233, 285-293

D. Hilbert, Ueber die Transcendenz der Zahlen e und p, Mathematische Annalen, (1893), vol. 43, pp. 216-219

G. Horton, A note on the calculation of Euler's constant, American Mathematical Monthly, (1916), vol. 23, p. 73

A.S. Householder, The Numerical Treatment of a Single Nonlinear Equation, McGraw-Hill, New York, (1970)

D. Huylebrouck, Van Ceulen's Tombstone, The Mathematical Intelligencer, (1995), vol. 4, pp. 60-61

C.L. Hwang, More Machin-Type Identities, Math. Gaz., (1997), pp. 120-121

W. Jones, Synopsis palmiorum matheseos, London, (1706), p. 263

W.J. Kaczor and M.T. Nowak, Problems in mathematical analysis I: Real numbers, sequences and series, AMS, (2000)

Y. Kanada, Y. Tamura, S. Yoshino and Y. Ushiro, Calculation of p to 10,013,395 decimal places based on the Gauss-Legendre Algorithm and Gauss Arctangent relation, Computer Centre, University of Tokyo, (1983), Tech. Report 84-01

Y. Kanada, Vectorization of Multiple-Precision Arithmetic Program and 201,326,000 Decimal Digits of p Calculation, Supercomputing, (1988), vol. 2, Science and Applications, pp. 117-128

A. Karatsuba and Y. Ofman, Multiplication of multidigit numbers on automata (Russian), Dokl. Akad. Nauk SSSR, (1962), vol. 145, pp. 293-294

E.A. Karatsuba, Fast evaluation of transcendental functions, Problems of Information Transmission, (1991), vol. 27, pp. 339-360

E.A. Karatsuba, Fast Calculation of the Riemann Zeta function z(s) for Integer Values of the Arguments, Problems of Information Transmission 31, (1995), pp. 353-362

A.H. Karp and P. Markstein, High-Precision Division and Square Root, Transactions on Mathematical Software, (1997), vol. 23, number 4, pp. 561-589

V.J. Katz, A History of Mathematics-An Introduction, Addison-Wesley, (1998)

B.C. Kellner, The Bernoulli Number Page, World Wide Web site at the address:, (2002) 

J.C. Kluyver, De constante van Euler en de natuurlijhe getallen, Amst. Ak., (1924), vol. 33, pp. 149-151

M.D. Kruskal, American Mathematical Monthly, (1954), vol. 61, pp. 392-397

K. Knopp, Theory and application of infinite series, Blackie & Son, London, (1951)

C.G. Knott (ed.), Napier Tercentenary Memorial Volume, London, (1915)

Brothers, H.J. and J.A. Knox, New closed-form approximations to the logarithmic constant e, Math. Intelligencer, (1998)

J.A. Knox and H.J. Brothers, Novel series-based approximations to e, College Math. J., (1998)

D.E. Knuth, Euler's constant to 1271 places, Math. Comput., (1962), vol. 16, pp. 275-281

D.E. Knuth, The Art of Computer Programming, Vol. II, Seminumerical Algorithms, Addison Wesley, (1998)

J.C. Lagarias, V.S. Miller and A.M. Odlyzko, Computing pi(x): the Meissel-Lehmer method, Math. Comp., (1985), vol. 44, pp. 537-560

F. de Lagny, Mémoire sur la quadrature du cercle et sur la mesure de tout arc, tout secteur et tout segment donné, Histoire de l'Académie Royale des sciences, Paris, (1719)

L.Y. Lam and T.S. Ang, Circle Measurements in Ancient China, Historia Mathematica, (1986), vol. 13, pp. 325-340

J.H. Lambert, Mémoire sur quelques propriétés remarquables des quantités transcendantes circulaires et logarithmiques, Histoire de l'Académie Royale des Sciences et des Belles-Lettres der Berlin, (1761), pp. 265-276

C. Lanczos, Applied Analysis, Dover Publications, New York, (1988, first edition 1956)

A.M. Legendre, Eléments de géométrie, Didot, Paris, (1794)

A.M. Legendre, Mémoires de la classe des sciences mathématiques et physiques de l'Institut de France, Paris, (1809), pp. 477, 485, 490

A.M. Legendre, Traité des Fonctions Elliptiques, Paris, (1825-1828), vol. 2, p. 434

D.H. Lehmer, On Arctangent Relations for p, The American Mathematical Monthly, (1938), pp. 657-664

A.K. Lenstra, H.W. Lenstra, Jr. and L. Lovàsz, Factoring Polynomials with Rational Coefficients, Math. Ann. 261, (1982)

W.J. LeVeque, Fundamentals of Number Theory, New York, Dover Publications, (1996, first edition 1977)

R. Liénard, Tables fondamentales à 50 décimales des sommes Sn,un,ån, Paris, Centre de Docum. Univ., (1948)

W. Ligowski, Grenzen für die Basis der natürlichen Logarithmen, Grunert Arch., (1875), vol. 57, pp. 220-221

F. Lindemann, Ueber die Zahl p, Mathematische Annalen, (1882), vol. 20, pp. 213-225

F. Le Lionnais, Les nombres remarquables, Paris, Hermann, (1983)

J. Liouville, Sur des classes trés étendues de quantités dont la valeur n'est ni rationnelle ni même réductible à des irrationnelles algébriques, Comptes rendus, (1844), vol. 18, pp. 883-885, pp. 910-911

E. Maor, To Infinity and Beyond: A Cultural History of the Infinite,  Princeton University Press, (1991)

E. Maor, e: The Story of a Number, Princeton University Press, (1994)

C. Maclaurin, A Treatise of fluxions, Edinburgh, (1742)

N. Mercator, Logarithmotechnia: sive methodus construendi logarithmos nova, accurata & facilis, London, (1668)

C.W. Merrifield, The sums of the series of reciprocals of the prime numbers and of their powers, Proc. Roy. Soc. London, (1881), vol. 33, pp. 4-10

F. Mertens, Journal für Math., (1874), vol. 78, pp. 46-62

P. Moree, Approximation of singular series and automata, Manuscripta Math., (2000),  vol. 101, pp. 385-399

J. Muir, Of Men and Numbers, Dover Publications, New York, (1996, first edition 1961)

J. Napier, Mirifici logarithmorum canonis descriptio, Edinburgh, (1614)

J. Napier, Mirifici logarithmorum canonis constructio, Edinburgh, (1619)

O. Neugebauer, The exact sciences in antiquity, Dover Publications, New York, (1969, first edition 1957)

M. Newman, D. Shanks, On a Sequence Arising in Series for p, Math. of Comp., (1984), vol. 42, pp. 199-217

I. Newton, Methodus fluxionum et serierum infinitarum, (1664-1671)

T. Nicely, Enumeration to 1014 of the Twin Primes and Brun's Constant, Virginia J. Sci., (1996), vol. 46, pp. 195-204

S.C. Nicholson and J. Jeenel, Some comments on a NORC computation of p, MTAC, (1955), vol. 9, pp. 162-164

N. Nielsen, Om log(2) og 1/12-1/32+1/52-1/72+..., Nyt Tidss. for Math., (1894), pp. 22-25

N. Nielsen, Handbuch der Theorie der Gammafunktion, Leipzig, (1906)

I. Niven, A simple Proof that p is irrational, Bull. Amer. Math. Soc., (1947), vol. 53, p. 509

J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, New York, Academic Press, (1970)

H. Padé, Sur l'irrationalité des nombres e et p, Darboux Bull., (1888), vol. 12, pp. 144-148

G.M. Phillips, Archimedes the Numerical Analyst, The American Mathematical Monthly, (1981), vol. 88, pp. 165-169

A. van der Poorten, A Proof that Euler Missed..., Apéry's Proof of the Irrationality of z(3), The Mathematical Intelligencer, (1979), vol. 1, pp. 195-203

R. Preston, The Mountains of Pi, The New Yorker, March 2, (1992), pp. 36-67

M. Prévost, A Family of Criteria for Irrationality of Euler's Constant, preprint, (2005)

S. Rabinowitz, A Spigot-Algorithm for p, Abstract of the American Mathematical Society, (1991), vol. 12, p. 30

R. Rado, A Note on the Bernoullian Numbers, J. London Math. Soc., (1934), vol. 9, pp. 88-90

C.T. Rajagopal and T. V. Vedamurti Aiyar, A Hindu approximation to pi, Scripta Math., (1952), vol. 18, pp. 25-30

S. Ramanujan, Modular equations and approximations to p, Quart. J. Pure Appl. Math., (1914), vol. 45, pp. 350-372

S. Ramanujan, A series for Euler's constant g, Messenger, (1916), vol. 46, pp. 73-80

S. Ramanujan, Collected Papers, Chelsea, New York, (1962)

J. Raphson, Analysis Aequationum universalis, London, (1690)

G.W. Reitwiesner, An ENIAC Determination of p and e to more than 2000 Decimal Places, Mathematical Tables and other Aids to Computation, (1950), vol. 4, pp. 11-15

P. Ribenboim, The new Book of Prime Number Records, Springer, (1996)

P. Ribenboim, The little Book of bigger Primes, Springer, (2004)

L.W. Richardson, The deferred Approach to the Limit, Philosophical Transactions of the Royal Society of London, (1927), serie A, vol. 226

T. Rivoal, La fonction Zeta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs, C. R. Acad. Sci., (2000), vol. 331, pp. 267-270

W. Romberg, Vereinfachte numerische Integration, Det Kong. Norkse Videnskabernes Selskabs Forhandlinger, Trondheim, (1955), vol. 28, n°7, pp. 30-36

W. Rutherford, Computation of the Ratio of the Diameter of a Circle to its Circumference to 208 places of Figures, Philosophical Transactions of the Royal Society of London, (1841), vol. 131, pp. 281-283

L. Saalschütz, Vorlesungen über die Bernoullischen Zahlen, Berlin, Verlag von Julius Springer, (1893)

M. Saigey, Problèmes d'arithmétique et exercices de calcul du second degré avec les solutions raisonnées, Hachette, Paris, (1859)

E. Salamin, Computation of p Using Arithmetic-Geometric Mean, Mathematics of Computation, (1976), vol. 30, pp. 565-570

A. Sale, The Calculation of e to many Significant Digits, Computing Journal, (1968), vol. 11, pp. 229-230

H.C. Schepler, The Chronology of Pi, Mathematics Magazine, (1950), vol. 23

A. Schönhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing, (1971), vol. 7, pp. 281-292

P. Sebah, Machin like formulae for logarithm, Unpublished, (1997)

L. Seidel, Ueber eine Darstellung des Kreisbogens, des Logarithmus und des elliptischen Integrales erster Art durch unendliche Producte, Borchardt J., (1871), vol. 73, pp. 273-291

W. Shanks, Contributions to Mathematics Comprising Chiefly the Rectification of the Circle to 607 Places of Decimals, G. Bell, London, (1853)

W. Shanks, (On Euler's constant), Proc. Roy. Soc. London, (1869), vol. 18, p. 49

W. Shanks, Second paper on the numerical value of Euler's constant and the summation of the harmonic series employed in obtaining such value, Proc. Roy. Soc. London, (1871), vol. 19, pp. 29-34

W. Shanks, Second paper on the numerical values of e,loge2,loge3 and loge10, also on the numerical value of M the modulus of the common system of logarithms, all to 205 decimals, Proc. of London, (1871), vol. 19, pp. 27-29

W. Shanks, On the Extension of the Numerical Value of p, Proceedings of the Royal Society of London, (1873), vol. 21, pp. 315-319

D. Shanks and J.W. Wrench, Jr., Calculation of p to 100,000 Decimals, Math. Comput., (1962), vol. 16, pp. 76-99

D. Shanks and J.W. Wrench, Jr., Calculation of e to 100,000 Decimals, Math. Comput., (1969), vol. 23, pp. 679-680

D. Shanks and J.W. Wrench, Jr., Brun's Constant, Math. Comput., (1974), vol. 28, pp. 293-299

D.E. Smith, A Source Book in Mathematics, Dover Publications, New York, (1959, first edition 1929)

W. van Roijen Snell (Snellius), Cyclometricus, Leiden, (1621)

J. Sondow, An antisymmetric formula for Euler's constant, Mathematics Magazine, (1998), vol. 71, number 3, pp. 219-220

J. Sondow, Criteria for irrationality of Euler's constant, Proc. Amer. Math. Soc., (2003), vol. 131, pp. 3335-3344

K.G.C. von Staudt, Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffend, J. reine angew. Math., (1840), vol. 21, pp. 372-374

T.J. Stieltjes, Tables des valeurs des sommes Sk=ån=1¥n-k,Acta Mathematica, (1887), vol. 10, pp. 299-302

C. Störmer, Sur l'application de la théorie des nombres entiers complexes à la solution en nombres rationnels x1,x2,...,xn,c1,c2,...,cn,k de l'équation c1arctg x1+c2 arctg x2+...+cn arctg xn=kp/4, Archiv for Mathematik og Naturvidenskab, (1896), vol. 19

C. Störmer, Solution complète en nombres entiers de l'équation m.arctang[ 1/x]+n.arctang[ 1/y]=k[(p)/4], Bull. Soc. Math. France, (1899), vol. 27, pp. 160-170

D.W. Sweeney, On the Computation of Euler's Constant, Mathematics of Computation, (1963), pp. 170-178

D. Takahasi and Y. Kanada, Calculation of Pi to 51.5 Billion Decimal Digits on Distributed Memory and Parallel Processors, Transactions of Information Processing Society of Japan, (1998), vol. 39, n°7

Y. Tamura and Y. Kanada, Calculation of p to 4,194,293 Decimals Based on Gauss-Legendre Algorithm, Computer Center, University of Tokyo, Technical Report-83-01

G. Tenenbaum and M. Mendès France, Les nombres premiers, Collection que sais-je ?, Presses universitaires de France, 1997

J. Todd, A Problem on Arc Tangent Relations, Amer. Math. Monthly, (1949), vol. 56, pp. 517-528

J. Todd, The Lemniscate Constants, Communications of the ACM, (1975), vol. 18, pp. 14-19

H.S. Uhler, Recalculation and extension of the modulus and of the logarithms of 2, 3, 5, 7 and 17, Proc. Nat. Acad. Sci., (1940), vol. 26, pp. 205-212

G. Vacca, A New Series for the Eulerian Constant, Quart. J. Pure Appl. Math, (1910), vol. 41, pp. 363-368

C. de la Vallée Poussin, Sur les valeurs moyennes de certaines fonctions arithmétiques, Annales de la société scientifique de Bruxelles, (1898), vol. 22, pp. 84-90

G. Vega, Thesaurus Logarithmorum Completus, Leipzig, (1794)

F. Viète, Opera Mathematica (reprinted), Georg Olms Verlag, Hildesheim, New York, (1970)

A. Vlacq, Arithmetica logarithmica, Gouda, (1628)

A. Volkov, Calculation of p in ancient China : from Liu Hui to Zu Chongzhi, Historia Sci., vol. 4, (1994), pp. 139-157

S. Wagon, Is p Normal?, The Mathematical Intelligencer, vol. 7, (1985), pp. 65-67

J. Wallis, Arithmetica infinitorum, sive nova methodus inquirendi in curvilineorum quadratum, aliaque difficiliora matheseos problemata, Oxford, (1655)

K. Weierstrass, Zu Lindemann's Abhandlung: 'Über die Ludolph'sche Zahl', Sitzungber. Königl. Preuss. Akad. Wissensch. zu Berlin, (1885), vol. 2, pp. 1067-1086

E.W. Weisstein, CRC Concise Encyclopedia of Mathematics, CRC Press, (1999)

J.W. Wrench Jr. and L.B. Smith, Values of the terms of the Gregory series for arccot 5 and arccot 239 to 1150 and 1120 decimal places, respectively, Mathematical Tables and other Aids to Computation, (1950), vol. 4, pp. 160-161

J.W. Wrench Jr.,  A new calculation of Euler's constant, MTAC, (1952), vol. 6, p. 255

J.W. Wrench Jr., The Evolution of Extended Decimal Approximations to p, The Mathematics Teacher, (1960), vol. 53, pp. 644-650

J.W. Wrench Jr., Evaluation of Artin's constant and the twin prime constant, Math. Comp., (1961), vol. 15, pp. 396-398

P. Wynn, On a device for computing the em(Sn) transformation, MTAC, (1956), vol. 10, pp. 91-96

G. Xiong, On a kind of the best estimates for the Euler constant g, Acta Math. Sci. 16, (1996), vol. 4, pp. 458-468

R.M. Young, Euler's constant, Math. Gazette 75, (1991), vol. 472, pp. 187-190