References

[1]
M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover, New York, (1964)

[2]
J.C. Adams, On the value of Euler's constant, Proc. Roy. Soc. London, (1878), vol. 27, pp. 88-94

[3]
J.C. Adams, On the calculation of Bernoulli's numbers up to B62 by means of Staudt's theorem, Rep. Brit. Ass., (1877)

[4]
A.C. Aitken, On Bernoulli's numerical solution of algebraic equations, Proc. Roy. Soc. Edinburgh, (1926), vol. 46, pp. 289-305

[5]
Al-Kashi, Treatise on the Circumference of the Circle, (1424)

[6]
G.E. Andrews, R. Askey and R. Roy, Special functions, Cambridge University Press, Cambridge, (1999)

[7]
Le Petit Archimède, no. hors série, Le nombre p, (1980)

[8]
J. Arndt and C. Haenel, p- Unleashed, Springer, (2001)

[9]
E. Artin, The Gamma Function, New York, Holt, Rinehart and Winston, (1964)

[10]
D.H. Bailey, Numerical Results on the Transcendence of Constants Involving p, e, and Euler's Constant, Mathematics of Computation, (1988), vol. 50, pp. 275-281

[11]
D.H. Bailey, The Computation of p to 29,360,000 Decimal Digits Using Borweins' Quartically Convergent Algorithm, Mathematics of Computation, (1988), vol. 50, pp. 283-296

[12]
D.H. Bailey, J.M. Borwein, P.B. Borwein and S. Plouffe, The Quest for Pi, Mathematical Intelligencer, (1997), vol. 19, no. 1, pp. 50-57

[13]
D.H. Bailey, P.B. Borwein and S. Plouffe, On the Rapid Computation of Various Polylogarithmic Constants, Mathematics of Computation, (1997), vol. 66, pp. 903-913

[14]
A. Baker, A Transcendental Number Theory, Cambridge University Press, London, (1975)

[15]
J.P. Ballantine, The Best (?) Formula for Computing p to a Thousand Places, The American Mathematical Monthly, (1939), vol. 46, pp. 499-501

[16]
E.W. Barnes, The theory of the gamma function, Messenger Math. (2), (1900), vol. 29, pp. 64-128

[17]
E.W. Barnes, On the expression of Euler's constant as a definite integral, Messenger, (1903), vol. 33, pp. 59-61

[18]
P. Beckmann, A History of p, St. Martin's press, New York, (1971)

[19]
L. Berggren, J. Borwein and P. Borwein, Pi : A Source Book, Springer, (1997)

[20]
F. Beukers, A note on the irrationality of z(3), Bull. London Math. Soc. 11, (1979), pp. 268-272

[21]
W.A. Beyer and M.S. Waterman, Error analysis of a computation of Euler's constant, Math. Comp, (1974), vol. 28, pp. 599-604

[22]
W.A. Beyer and M.S. Waterman, Decimals and partial quotients of Euler's constant and ln(2), Math. Comp, (1974), vol. 28, p. 667

[23]
J.P.M. Binet, Journal école polyt., (1839), vol. 16, p. 131

[24]
R.H. Birch, An Algorithm for the Construction of Arctangent Relations, Journal of the London Math. Soc., (1946), vol. 21, pp. 173-174

[25]
D. Blatner, The Joy of Pi, Walker & Co., (1997)

[26]
H. Bohr and I. Mollerup, Loerbog I matematisk Analyse, Kopenhagen, (1922), vol. 3

[27]
R. Bombelli, L'Algebra, parte maggiore dell'aritmetica, divisa in tre libri, Venice, (1572)

[28]
Boorman, (On the value of e), The Mathematical Magazine, (1884), vol. 1, p. 204

[29]
G. Boros and V.H. Moll, Irresistible Integrals, Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, (2004)

[30]
J.M. Borwein and P.B. Borwein, The Arithmetic-Geometric Mean and Fast Computation of Elementary Functions, SIAM review, (1984), vol. 26, pp. 351-366

[31]
J.M. Borwein and P.B. Borwein, Pi and the AGM - A study in Analytic Number Theory and Computational Complexity, A Wiley-Interscience Publication, New York, (1987)

[32]
J.M. Borwein and P.B. Borwein, More Ramanujan-type series for 1/p, Ramanujan Revisited, Academic Press, Boston, (1988), pp. 359-374

[33]
J.M. Borwein and P.B. Borwein, Ramanujan and Pi, Scientific American, (1988), pp. 112-117

[34]
J.M. Borwein, P.B. Borwein and D.H. Bailey, Ramanujan, Modular Equations, and Approximations to Pi or How to Compute One Billion Digits of Pi, The American Mathematical Monthly, (1989), vol. 96, pp. 201-219

[35]
J.M. Borwein and I.J. Zucker, Elliptic integral evaluation of the Gamma function at rational values of small denominator, IMA J. of Numer Analysis, (1992), vol. 12, pp. 519-526

[36]
P.B. Borwein, An efficient algorithm for the Riemann Zeta function, (1995)

[37]
R.P. Brent, Irregularities in the Distribution of Primes and Twin Primes, Math. of Comp., (1975), vol. 29, pp. 43-56

[38]
R.P. Brent, The Complexity of Multiple-Precision Arithmetic, Complexity of Computational Problem Solving, R. S. Andressen and R. P. Brent, Eds, Univ. of Queensland Press, Brisbane, (1976)

[39]
R.P. Brent, Fast multiple-Precision evaluation of elementary functions, J. Assoc. Comput. Mach., (1976), vol. 23, pp. 242-251

[40]
R.P. Brent, Computation of the regular continued fraction for Euler's constant, Math. Comp., (1977), vol. 31, pp. 771-777

[41]
R.P. Brent and E.M. McMillan, Some New Algorithms for High-Precision Computation of Euler's constant, Math. Comput., (1980), vol. 34, pp. 305-331

[42]
C. Brézinski, Algorithmes d'accélération de la convergence, Etude numérique, Edition Technip, Paris, (1978)

[43]
H. Briggs, Arithmetica logarithmica sive logarithmorum Chiliades Triginta, Londres, (1624)

[44]
E.M. Bruins, On the history of logarithms: Bürgi, Napier, Briggs, de Decker, Vlacq, Huygens, Janus 67, (1980), vol. 4, pp. 241-260

[45]
V. Brun, La série 1/5+1/7+1/11+1/13+1/17+1/19+1/29+1/31+..., où les dénominateurs sont ''nombres premiers jumeaux'' est convergente ou finie, Bull. Sci. Math., (1919), vol. 43, pp. 124-128

[46]
J. Bürgi, Arithmetische und geometrische Progress Tabulen, sambt gründlichem unterricht wie solche nützlich in allerley Rechnungen zugerbrauchen und verstanden werden sol, Prague, (1620)

[47]
W. Burnside, On rational approximations to logx , Messenger, (1917), vol. 47, pp. 79-80

[48]
F. Cajori, A History of Mathematical notations, Dover, (republication 1993, original 1928-1929)

[49]
D. Castellanos, The Ubiquitous Pi. Part I., Math. Mag., (1988), vol. 61, pp. 67-98

[50]
L. van Ceulen, Van de Cirkel, daarin geleert wird te finden de naeste proportie des Cirkels diameter tegen synen Omloop, (1596,1616), Delft

[51]
D.G. Champernowne, The construction of decimals normal in the scale of ten, J. Lond. Math. Soc. 8, (1933)

[52]
D.V. Chudnovsky and G.V. Chudnovsky, Approximations and complex multiplication according to Ramanujan, in Ramanujan Revisited, Academic Press Inc., Boston, (1988), pp. 375-396 & pp. 468-472

[53]
D.V. Chudnovsky and G.V. Chudnovsky, The Computation of Classical Constants, Proc. Nat. Acad. Sci. USA, (1989), vol. 86, pp. 8178-8182

[54]
T. Clausen, Theorem, Astron. Nach., (1840), vol. 17, pp. 351-352

[55]
C.W. Clenshaw and A.R. Curtis, A method for numerical integration on an automatic computer, Num. Math., (1960), vol. 2, pp. 197-205

[56]
H. Cohen, F. Rodriguez Villegas and D. Zagier, Convergence acceleration of alternating series, Bonn, (1991)

[57]
H. Cohen, High precision computation of Hardy-Littlewood constants, preprint, (1991)

[58]
H. Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, (1995)

[59]
J.L. Coolidge, The number e, Amer. Math. Monthly, (1950), vol. 57, pp. 591-602

[60]
A. Cox, The Arithmetic-Geometric Mean of Gauss, L'enseignement Mathématique, (1984), vol. 30, pp. 275-330

[61]
R. Crandall and C. Pomerance, Prime Numbers, A Computational Perspective, Springer, (2005)

[62]
Z. Dahse, Der Kreis-Umfang für den Durchmesser 1 auf 200 Decimalstellen berechnet, Journal für die reine und angewandte Mathematik, (1844), vol. 27, p. 198

[63]
J.P. Delahaye, Le fascinant nombre p, Bibliothèque Pour la Science, Belin, (1997)

[64]
J.P. Delahaye, Merveilleux nombres premiers, Bibliothèque Pour la Science, Belin, (2000)

[65]
M. Deléglise and J. Rivat, Computing pi(x): the Meissel, Lehmer, Lagarias, Miller, Odlyzko method, Math. Comp., (1996), vol. 65, pp. 235-245

[66]
W. Dunham, Euler The Master of Us All, The Mathematical Association of America, (1999)

[67]
H. Engels, Quadrature of the Circle in Ancient Egypt, Historia Mathematica, (1977), vol. 4, pp. 137-140

[68]
L. Euler, Inventio summae cuiusque seriei ex dato termino generali, St Petersbourg, (1736)

[69]
L. Euler, Introduction à l'analyse infinitésimale (french traduction by Labey), Barrois, ainé, Librairie, (original 1748, traduction 1796), vol. 1

[70]
P. Eymard and J. P. Lafon, Autour du nombre p, Paris, Hermann, (1999)

[71]
D. Ferguson, Evaluation of p. Are Shanks' Figures Correct ?, Mathematical Gazette, (1946), vol. 30, pp. 89-90

[72]
D. Ferguson, Value of p, Nature, (1946), vol. 17, p. 342

[73]
S. Finch, Favorite mathematical constants,  http://pauillac.inria.fr/algo/bsolve/constant/constant.html, (1995)

[74]
S. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, Cambridge University Press, (2003)

[75]
P. Flajolet and I. Vardi, Zeta Function Expansions of Classical Constants, (1996)

[76]
F. Franklin, On an expression for Euler's constant, J. Hopkins circ., (1883), vol. 2, p. 143

[77]
E. Frisby, On the calculation of p, Messenger of Mathematics, (1872), vol. 2, p. 114

[78]
C.E. Fröberg, On the sum of inverses of primes and twin primes, Nordisk Tidskr. Informationsbehandling (BIT), (1961), vol. 1, pp. 15-20

[79]
C.F. Gauss, Werke, Göttingen, (1866-1933), vol. 3

[80]
F. Genuys, Dix milles décimales de p, Chiffres, (1958), vol. 1, pp. 17-22

[81]
I. Gerst, Some Series for Euler's Constant, Amer. Math. Monthly, (1969), vol. 76, pp. 273-275

[82]
N.M. Gibbins, A close upper bound for Euler's constant, Math. Gazette, (1930), vol. 15, pp. 113-114

[83]
G.A. Gibson, Napier Tercentenary Celebration: Handbook of the Exhibition, Royal Society of Edinburgh, (1914)

[84]
J.W.L. Glaisher, History of Euler's constant, Messenger of Math., (1872), vol. 1, pp. 25-30

[85]
J.W.L. Glaisher, An enumeration of prime-pairs, Messenger of Mathematics, (1878), vol. 8, pp. 28-33

[86]
J.W.L. Glaisher, Note on a relation connecting constants analogous to Euler's constant, Messenger, (1894), vol. 24, pp. 24-27

[87]
J.W.L. Glaisher, Methods of increasing the convergence of certain series of reciprocals, Quart. J., (1902), vol. 34, pp. 252-347

[88]
M. Godefroy, La fonction Gamma ; Théorie, Histoire, Bibliographie, Gauthier-Villars, Paris, (1901)

[89]
X. Gourdon and P. Sebah, Numbers, Constants and Computation, http://numbers.computation.free.fr/Constants/constants.html, (1999)

[90]
R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, (1994)

[91]
J. Guilloud and M. Bouyer, 1 000 000 de décimales de p, Commissariat à l'Energie Atomique, (1974)

[92]
E. Hairer and G. Wanner, L'analyse au fil de l'histoire, Bibliothèque Scopos, Springer, (2000)

[93]
G.H. Hardy, Ramanujan, Cambridge Univ. Press, London, (1940)

[94]
G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford Science Publications, (1979)

[95]
M. Hata, Rational approximations to p and some other numbers, Acta arithmetica, (1993), vol. 63, pp. 335-349

[96]
J. Havil, Gamma. Exploring Euler's Constant, Princeton University Press, (2003)

[97]
T.L. Heath, The Works of Archimedes, Cambridge University Press, (1897)

[98]
C. Hermite, Sur la fonction exponentielle, C. R. Académie des Sciences, (1873), vol. 77, pp. 18-24, 74-79, 226-233, 285-293

[99]
D. Hilbert, Ueber die Transcendenz der Zahlen e und p, Mathematische Annalen, (1893), vol. 43, pp. 216-219

[100]
G. Horton, A note on the calculation of Euler's constant, American Mathematical Monthly, (1916), vol. 23, p. 73

[101]
A.S. Householder, The Numerical Treatment of a Single Nonlinear Equation, McGraw-Hill, New York, (1970)

[102]
D. Huylebrouck, Van Ceulen's Tombstone, The Mathematical Intelligencer, (1995), vol. 4, pp. 60-61

[103]
C.L. Hwang, More Machin-Type Identities, Math. Gaz., (1997), pp. 120-121

[104]
W. Jones, Synopsis palmiorum matheseos, London, (1706), p. 263

[105]
W.J. Kaczor and M.T. Nowak, Problems in mathematical analysis I: Real numbers, sequences and series, AMS, (2000)

[106]
Y. Kanada, Y. Tamura, S. Yoshino and Y. Ushiro, Calculation of p to 10,013,395 decimal places based on the Gauss-Legendre Algorithm and Gauss Arctangent relation, Computer Centre, University of Tokyo, (1983), Tech. Report 84-01

[107]
Y. Kanada, Vectorization of Multiple-Precision Arithmetic Program and 201,326,000 Decimal Digits of p Calculation, Supercomputing, (1988), vol. 2, Science and Applications, pp. 117-128

[108]
A. Karatsuba and Y. Ofman, Multiplication of multidigit numbers on automata (Russian), Dokl. Akad. Nauk SSSR, (1962), vol. 145, pp. 293-294

[109]
E.A. Karatsuba, Fast evaluation of transcendental functions, Problems of Information Transmission, (1991), vol. 27, pp. 339-360

[110]
E.A. Karatsuba, Fast Calculation of the Riemann Zeta function z(s) for Integer Values of the Arguments, Problems of Information Transmission 31, (1995), pp. 353-362

[111]
A.H. Karp and P. Markstein, High-Precision Division and Square Root, Transactions on Mathematical Software, (1997), vol. 23, number 4, pp. 561-589

[112]
V.J. Katz, A History of Mathematics-An Introduction, Addison-Wesley, (1998)

[113]
B.C. Kellner, The Bernoulli Number Page, World Wide Web site at the address: http://www.Bernoulli.org, (2002) 

[114]
J.C. Kluyver, De constante van Euler en de natuurlijhe getallen, Amst. Ak., (1924), vol. 33, pp. 149-151

[115]
M.D. Kruskal, American Mathematical Monthly, (1954), vol. 61, pp. 392-397

[116]
K. Knopp, Theory and application of infinite series, Blackie & Son, London, (1951)

[117]
C.G. Knott (ed.), Napier Tercentenary Memorial Volume, London, (1915)

[118]
Brothers, H.J. and J.A. Knox, New closed-form approximations to the logarithmic constant e, Math. Intelligencer, (1998)

[119]
J.A. Knox and H.J. Brothers, Novel series-based approximations to e, College Math. J., (1998)

[120]
D.E. Knuth, Euler's constant to 1271 places, Math. Comput., (1962), vol. 16, pp. 275-281

[121]
D.E. Knuth, The Art of Computer Programming, Vol. II, Seminumerical Algorithms, Addison Wesley, (1998)

[122]
J.C. Lagarias, V.S. Miller and A.M. Odlyzko, Computing pi(x): the Meissel-Lehmer method, Math. Comp., (1985), vol. 44, pp. 537-560

[123]
F. de Lagny, Mémoire sur la quadrature du cercle et sur la mesure de tout arc, tout secteur et tout segment donné, Histoire de l'Académie Royale des sciences, Paris, (1719)

[124]
L.Y. Lam and T.S. Ang, Circle Measurements in Ancient China, Historia Mathematica, (1986), vol. 13, pp. 325-340

[125]
J.H. Lambert, Mémoire sur quelques propriétés remarquables des quantités transcendantes circulaires et logarithmiques, Histoire de l'Académie Royale des Sciences et des Belles-Lettres der Berlin, (1761), pp. 265-276

[126]
C. Lanczos, Applied Analysis, Dover Publications, New York, (1988, first edition 1956)

[127]
A.M. Legendre, Eléments de géométrie, Didot, Paris, (1794)

[128]
A.M. Legendre, Mémoires de la classe des sciences mathématiques et physiques de l'Institut de France, Paris, (1809), pp. 477, 485, 490

[129]
A.M. Legendre, Traité des Fonctions Elliptiques, Paris, (1825-1828), vol. 2, p. 434

[130]
D.H. Lehmer, On Arctangent Relations for p, The American Mathematical Monthly, (1938), pp. 657-664

[131]
A.K. Lenstra, H.W. Lenstra, Jr. and L. Lovàsz, Factoring Polynomials with Rational Coefficients, Math. Ann. 261, (1982)

[132]
W.J. LeVeque, Fundamentals of Number Theory, New York, Dover Publications, (1996, first edition 1977)

[133]
R. Liénard, Tables fondamentales à 50 décimales des sommes Sn,un,ån, Paris, Centre de Docum. Univ., (1948)

[134]
W. Ligowski, Grenzen für die Basis der natürlichen Logarithmen, Grunert Arch., (1875), vol. 57, pp. 220-221

[135]
F. Lindemann, Ueber die Zahl p, Mathematische Annalen, (1882), vol. 20, pp. 213-225

[136]
F. Le Lionnais, Les nombres remarquables, Paris, Hermann, (1983)

[137]
J. Liouville, Sur des classes trés étendues de quantités dont la valeur n'est ni rationnelle ni même réductible à des irrationnelles algébriques, Comptes rendus, (1844), vol. 18, pp. 883-885, pp. 910-911

[138]
E. Maor, To Infinity and Beyond: A Cultural History of the Infinite,  Princeton University Press, (1991)

[139]
E. Maor, e: The Story of a Number, Princeton University Press, (1994)

[140]
C. Maclaurin, A Treatise of fluxions, Edinburgh, (1742)

[141]
N. Mercator, Logarithmotechnia: sive methodus construendi logarithmos nova, accurata & facilis, London, (1668)

[142]
C.W. Merrifield, The sums of the series of reciprocals of the prime numbers and of their powers, Proc. Roy. Soc. London, (1881), vol. 33, pp. 4-10

[143]
F. Mertens, Journal für Math., (1874), vol. 78, pp. 46-62

[144]
P. Moree, Approximation of singular series and automata, Manuscripta Math., (2000),  vol. 101, pp. 385-399

[145]
J. Muir, Of Men and Numbers, Dover Publications, New York, (1996, first edition 1961)

[146]
J. Napier, Mirifici logarithmorum canonis descriptio, Edinburgh, (1614)

[147]
J. Napier, Mirifici logarithmorum canonis constructio, Edinburgh, (1619)

[148]
O. Neugebauer, The exact sciences in antiquity, Dover Publications, New York, (1969, first edition 1957)

[149]
M. Newman, D. Shanks, On a Sequence Arising in Series for p, Math. of Comp., (1984), vol. 42, pp. 199-217

[150]
I. Newton, Methodus fluxionum et serierum infinitarum, (1664-1671)

[151]
T. Nicely, Enumeration to 1014 of the Twin Primes and Brun's Constant, Virginia J. Sci., (1996), vol. 46, pp. 195-204

[152]
S.C. Nicholson and J. Jeenel, Some comments on a NORC computation of p, MTAC, (1955), vol. 9, pp. 162-164

[153]
N. Nielsen, Om log(2) og 1/12-1/32+1/52-1/72+..., Nyt Tidss. for Math., (1894), pp. 22-25

[154]
N. Nielsen, Handbuch der Theorie der Gammafunktion, Leipzig, (1906)

[155]
I. Niven, A simple Proof that p is irrational, Bull. Amer. Math. Soc., (1947), vol. 53, p. 509

[156]
J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, New York, Academic Press, (1970)

[157]
H. Padé, Sur l'irrationalité des nombres e et p, Darboux Bull., (1888), vol. 12, pp. 144-148

[158]
G.M. Phillips, Archimedes the Numerical Analyst, The American Mathematical Monthly, (1981), vol. 88, pp. 165-169

[159]
A. van der Poorten, A Proof that Euler Missed..., Apéry's Proof of the Irrationality of z(3), The Mathematical Intelligencer, (1979), vol. 1, pp. 195-203

[160]
R. Preston, The Mountains of Pi, The New Yorker, March 2, (1992), pp. 36-67

[]
M. Prévost, A Family of Criteria for Irrationality of Euler's Constant, preprint, (2005)

[162]
S. Rabinowitz, A Spigot-Algorithm for p, Abstract of the American Mathematical Society, (1991), vol. 12, p. 30

[163]
R. Rado, A Note on the Bernoullian Numbers, J. London Math. Soc., (1934), vol. 9, pp. 88-90

[164]
C.T. Rajagopal and T. V. Vedamurti Aiyar, A Hindu approximation to pi, Scripta Math., (1952), vol. 18, pp. 25-30

[165]
S. Ramanujan, Modular equations and approximations to p, Quart. J. Pure Appl. Math., (1914), vol. 45, pp. 350-372

[166]
S. Ramanujan, A series for Euler's constant g, Messenger, (1916), vol. 46, pp. 73-80

[167]
S. Ramanujan, Collected Papers, Chelsea, New York, (1962)

[168]
J. Raphson, Analysis Aequationum universalis, London, (1690)

[169]
G.W. Reitwiesner, An ENIAC Determination of p and e to more than 2000 Decimal Places, Mathematical Tables and other Aids to Computation, (1950), vol. 4, pp. 11-15

[170]
P. Ribenboim, The new Book of Prime Number Records, Springer, (1996)

[171]
P. Ribenboim, The little Book of bigger Primes, Springer, (2004)

[172]
L.W. Richardson, The deferred Approach to the Limit, Philosophical Transactions of the Royal Society of London, (1927), serie A, vol. 226

[173]
T. Rivoal, La fonction Zeta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs, C. R. Acad. Sci., (2000), vol. 331, pp. 267-270

[174]
W. Romberg, Vereinfachte numerische Integration, Det Kong. Norkse Videnskabernes Selskabs Forhandlinger, Trondheim, (1955), vol. 28, n°7, pp. 30-36

[175]
W. Rutherford, Computation of the Ratio of the Diameter of a Circle to its Circumference to 208 places of Figures, Philosophical Transactions of the Royal Society of London, (1841), vol. 131, pp. 281-283

[176]
L. Saalschütz, Vorlesungen über die Bernoullischen Zahlen, Berlin, Verlag von Julius Springer, (1893)

[177]
M. Saigey, Problèmes d'arithmétique et exercices de calcul du second degré avec les solutions raisonnées, Hachette, Paris, (1859)

[178]
E. Salamin, Computation of p Using Arithmetic-Geometric Mean, Mathematics of Computation, (1976), vol. 30, pp. 565-570

[179]
A. Sale, The Calculation of e to many Significant Digits, Computing Journal, (1968), vol. 11, pp. 229-230

[180]
H.C. Schepler, The Chronology of Pi, Mathematics Magazine, (1950), vol. 23

[181]
A. Schönhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing, (1971), vol. 7, pp. 281-292

[182]
P. Sebah, Machin like formulae for logarithm, Unpublished, (1997)

[183]
L. Seidel, Ueber eine Darstellung des Kreisbogens, des Logarithmus und des elliptischen Integrales erster Art durch unendliche Producte, Borchardt J., (1871), vol. 73, pp. 273-291

[184]
W. Shanks, Contributions to Mathematics Comprising Chiefly the Rectification of the Circle to 607 Places of Decimals, G. Bell, London, (1853)

[185]
W. Shanks, (On Euler's constant), Proc. Roy. Soc. London, (1869), vol. 18, p. 49

[186]
W. Shanks, Second paper on the numerical value of Euler's constant and the summation of the harmonic series employed in obtaining such value, Proc. Roy. Soc. London, (1871), vol. 19, pp. 29-34

[187]
W. Shanks, Second paper on the numerical values of e,loge2,loge3 and loge10, also on the numerical value of M the modulus of the common system of logarithms, all to 205 decimals, Proc. of London, (1871), vol. 19, pp. 27-29

[188]
W. Shanks, On the Extension of the Numerical Value of p, Proceedings of the Royal Society of London, (1873), vol. 21, pp. 315-319

[189]
D. Shanks and J.W. Wrench, Jr., Calculation of p to 100,000 Decimals, Math. Comput., (1962), vol. 16, pp. 76-99

[190]
D. Shanks and J.W. Wrench, Jr., Calculation of e to 100,000 Decimals, Math. Comput., (1969), vol. 23, pp. 679-680

[191]
D. Shanks and J.W. Wrench, Jr., Brun's Constant, Math. Comput., (1974), vol. 28, pp. 293-299

[192]
D.E. Smith, A Source Book in Mathematics, Dover Publications, New York, (1959, first edition 1929)

[193]
W. van Roijen Snell (Snellius), Cyclometricus, Leiden, (1621)

[194]
J. Sondow, An antisymmetric formula for Euler's constant, Mathematics Magazine, (1998), vol. 71, number 3, pp. 219-220

[195]
J. Sondow, Criteria for irrationality of Euler's constant, Proc. Amer. Math. Soc., (2003), vol. 131, pp. 3335-3344

[196]
K.G.C. von Staudt, Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffend, J. reine angew. Math., (1840), vol. 21, pp. 372-374

[197]
T.J. Stieltjes, Tables des valeurs des sommes Sk=ån=1¥n-k,Acta Mathematica, (1887), vol. 10, pp. 299-302

[198]
C. Störmer, Sur l'application de la théorie des nombres entiers complexes à la solution en nombres rationnels x1,x2,...,xn,c1,c2,...,cn,k de l'équation c1arctg x1+c2 arctg x2+...+cn arctg xn=kp/4, Archiv for Mathematik og Naturvidenskab, (1896), vol. 19

[199]
C. Störmer, Solution complète en nombres entiers de l'équation m.arctang[ 1/x]+n.arctang[ 1/y]=k[(p)/4], Bull. Soc. Math. France, (1899), vol. 27, pp. 160-170

[200]
D.W. Sweeney, On the Computation of Euler's Constant, Mathematics of Computation, (1963), pp. 170-178

[201]
D. Takahasi and Y. Kanada, Calculation of Pi to 51.5 Billion Decimal Digits on Distributed Memory and Parallel Processors, Transactions of Information Processing Society of Japan, (1998), vol. 39, n°7

[202]
Y. Tamura and Y. Kanada, Calculation of p to 4,194,293 Decimals Based on Gauss-Legendre Algorithm, Computer Center, University of Tokyo, Technical Report-83-01

[203]
G. Tenenbaum and M. Mendès France, Les nombres premiers, Collection que sais-je ?, Presses universitaires de France, 1997

[204]
J. Todd, A Problem on Arc Tangent Relations, Amer. Math. Monthly, (1949), vol. 56, pp. 517-528

[205]
J. Todd, The Lemniscate Constants, Communications of the ACM, (1975), vol. 18, pp. 14-19

[206]
H.S. Uhler, Recalculation and extension of the modulus and of the logarithms of 2, 3, 5, 7 and 17, Proc. Nat. Acad. Sci., (1940), vol. 26, pp. 205-212

[207]
G. Vacca, A New Series for the Eulerian Constant, Quart. J. Pure Appl. Math, (1910), vol. 41, pp. 363-368

[208]
C. de la Vallée Poussin, Sur les valeurs moyennes de certaines fonctions arithmétiques, Annales de la société scientifique de Bruxelles, (1898), vol. 22, pp. 84-90

[209]
G. Vega, Thesaurus Logarithmorum Completus, Leipzig, (1794)

[210]
F. Viète, Opera Mathematica (reprinted), Georg Olms Verlag, Hildesheim, New York, (1970)

[211]
A. Vlacq, Arithmetica logarithmica, Gouda, (1628)

[212]
A. Volkov, Calculation of p in ancient China : from Liu Hui to Zu Chongzhi, Historia Sci., vol. 4, (1994), pp. 139-157

[213]
S. Wagon, Is p Normal?, The Mathematical Intelligencer, vol. 7, (1985), pp. 65-67

[214]
J. Wallis, Arithmetica infinitorum, sive nova methodus inquirendi in curvilineorum quadratum, aliaque difficiliora matheseos problemata, Oxford, (1655)

[215]
K. Weierstrass, Zu Lindemann's Abhandlung: 'Über die Ludolph'sche Zahl', Sitzungber. Königl. Preuss. Akad. Wissensch. zu Berlin, (1885), vol. 2, pp. 1067-1086

[216]
E.W. Weisstein, CRC Concise Encyclopedia of Mathematics, CRC Press, (1999)

[217]
J.W. Wrench Jr. and L.B. Smith, Values of the terms of the Gregory series for arccot 5 and arccot 239 to 1150 and 1120 decimal places, respectively, Mathematical Tables and other Aids to Computation, (1950), vol. 4, pp. 160-161

[218]
J.W. Wrench Jr.,  A new calculation of Euler's constant, MTAC, (1952), vol. 6, p. 255

[219]
J.W. Wrench Jr., The Evolution of Extended Decimal Approximations to p, The Mathematics Teacher, (1960), vol. 53, pp. 644-650

[220]
J.W. Wrench Jr., Evaluation of Artin's constant and the twin prime constant, Math. Comp., (1961), vol. 15, pp. 396-398

[221]
P. Wynn, On a device for computing the em(Sn) transformation, MTAC, (1956), vol. 10, pp. 91-96

[222]
G. Xiong, On a kind of the best estimates for the Euler constant g, Acta Math. Sci. 16, (1996), vol. 4, pp. 458-468

[223]
R.M. Young, Euler's constant, Math. Gazette 75, (1991), vol. 472, pp. 187-190